无人机集群任务分配技术研究综述

本文总结了无人机集群任务分配技术研究现状,涵盖协同任务分配理论、问题建模、任务预分配和重分配算法等。指出该技术面临通用化建模、最优解求解、突发事件应对和大规模异构系统协同等问题,并论述了基于模型工程建模、生成对抗网络预分配等发展方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源自:系统工程与电子技术

作者:毕文豪  张梦琦  高飞  杨咪  张安

“人工智能技术与咨询”  发布

摘 要

任务分配是无人机集群实现高效遂行作战任务的关键技术。随着无人机集群技术的发展和作战样式的转变, 无人机集群的作战任务领域不断拓展, 任务分配所涵盖的范围不断扩大, 任务分配问题的规模和复杂性不断增加, 这都对无人机集群任务分配技术提出了新的挑战。本文对无人机集群作战理论、任务分配建模、任务预\重分配算法、异构无人系统联合应用下任务分配的研究现状进行了全面的总结, 凝练了目前无人机集群任务分配技术面临的通用化建模、面向多任务的任务预分配算法最优解求解、有限时间下面向突发事件的任务重分配算法寻优、路径规划紧耦合下面向大规模异构无人系统的协同任务分配等问题, 并针对性地论述了未来无人机集群任务分配技术的若干发展方向, 为提升无人机集群任务分配的求解质量和求解速度提供新的研究思路和解决途径, 对于全面了解无人机集群任务分配技术具有重要参考意义。

关键词

无人机集群 ; 任务预分配 ; 任务重分配 ; 通用化建模 ; 突发事件

引言

随着无人机相关技术的突破创新和快速发展, 无人机类型越来越多样化, 任务领域范围不断拓展, 已经逐步实现从安全空域下执行侦察监视等简单任务向对抗空域下突防打击等复杂作战任务的跨越式发展。与此同时, 网络化、信息化、体系化的战场环境呈现出高动态、强对抗、巨复杂等特点, 单架无人机有限的载荷能力很难独立执行大区域监视、多目标攻击等复杂任务, 因此无人机的作战样式正在朝着集群化和智能化方向发展, 无人机集群协同作战是未来无人机作战方式的重要发展趋势。

在无人机集群作战中, 低成本、大规模的异构无人机平台搭载不同的载荷, 通过自组织协同形成规模优势, 具有资源配置灵活、战场适应能力强等特点, 可满足巨复杂、高动态、强对抗的战场环境下大区域协同侦察监视、协同多目标饱和攻击等任务需求, 达到集群对抗的效果, 提高无人机集群的作战效能。

无人机集群作战带来的巨大规模优势和作战效能引起了以美国为代表的世界各军事强国对无人机集群作战技术的热切关注, 其中无人机集群任务分配技术作为无人机集群作战的关键技术之一, 是实现无人机集群化和智能化的重要技术支撑, 已成为国防工业部门和各科研机构、研究学者的研究热点。

1 无人机集群任务分配技术研究现状

目前, 无人机集群任务分配技术在顶层设计、理论研究、项目论证、关键技术攻关等方面都取得了一定的进展。

1.1 无人机集群协同任务分配理论研究现状

美国国防高级研究计划局、海军研究办公室、麻省理工学院、宾夕法尼亚大学“格拉斯帕”实验室和诺斯罗普·格鲁门公司等研究单位在多无人机任务分配技术的研究方向上开展了大量的研究和论证工作, 取得了很多理论成果, 并且启动了多个无人机集群项目。2016年5月, 美国空军发布的小型无人机系统发展路线图——《2016-2036年小型无人机系统飞行规划》[1]指出: 为确保战争的制胜能力与强军事对抗环境下的非对称优势, 应重点研究更具成本效益和作战威力的集群式无人机作战样式。同时, 详细阐述了“无人机蜂群”的概念, 并计划在2036年建成横跨航空、太空、网空三大作战领域的无人机集群作战系统。2018年8月, 美国国防部发布的《无人系统综合路线图2017-2042》[2]指出了19项近、远期需要重点发展的面向军事作战需求、能大幅提升无人机集群作战效能的关键技术, 包括开放式体系架构、机器学习、人工智能等。美国海军研究生院[3-4]提出了一种面向无人集群作战体系设计的一体化框架, 该框架针对未来无人机集群作战的去中心化、自组网、扁平化结构等特点, 构建了无人机集群“使命-战术-行动-算法-数据”五层任务框架, 并以无人机集群执行情报、监视、侦察和空战任务为例分析了无人机集群在每层中的具体任务, 给出了具体的军事概念模型。

2017年7月发布的《新一代人工智能发展规划》中多次提及“群体感知、协同与演化”“群体集成智能”“自主无人系统”等概念, 同时明确指出应将人工智能与无人机集群紧密融合, 借助人工智能重点突破无人系统相关核心技术, 实现无人机集群相关技术的跨越式发展[5]。文献[6]针对无人飞行器集群访问、打击、察打一体化等多样化任务类型的特点和需求, 结合无人机集群任务资源调度问题的约束条件与收益函数, 分析论述了无人机集群任务调度技术进展和常用的智能优化算法。文献[7]介绍了无人机集群的研究动机和研究方法, 分析了无人机集群的蜂群作战、忠诚僚机、组队协作、狼群作战等典型作战模式, 并提出了面向复杂作战任务的调度与管理技术、分布式协同控制技术等亟需解决的共性关键技术。文献[8]首先从任务分配和航迹规划两方面对多无人机任务规划技术方法、新的技术难点进行了全面的总结, 然后结合群集智能分析了无人机集群任务规划技术的若干发展方向。文献[9]强调协作任务分配是多无人机自主控制的关键技术, 分析了多无人机协同任务分配在表征场景和获得高质量解决方案方面的重要性和难点, 提出了无人机群中的协作任务分配发展方向。文献[10]通过分析复杂环境下无人集群任务场景及能力需求, 论述了复杂环境下无人集群OODA(observation, orentation, decision, action)任务面临的挑战, 梳理了无人集群自组织任务规划、无人集群协同控制等关键技术及发展方向。

1.2 无人机集群任务分配问题建模研究现状

国内外研究人员一般利用经典的组合优化问题模型来描述无人机集群协同作战任务分配问题。经典模型主要有: 旅行商问题(traveling salesman problem, TSP)模型[11]、网络流优化(network flow optimization, NFO)模型[12]、车辆路由问题(vehicle routing problem, VRP)模型[13]、协同多任务分配问题(cooperative multi-tasks assignment problem, CMTAP)模型[14]、混合整数线性规划(mixed integer linear programming, MILP)模型[15]、基于马尔可夫决策过程(Markov decision process, MDP)模型[16]等。

TSP和VRP模型主要用于求解单一任务的分配问题, 而对多任务情况适用性较差; NFO模型较早运用于弹药较少的广域搜索弹药任务分配问题上; MILP模型描述简洁, 很容易表示涉及到数值的全局约束, 将任务规划问题描述为一个组合优化问题, 实用性较强, 但计算成本会随问题规模增大而呈指数型增长; 而基于NFO和MILP模型提出的CMTAP模型考虑多无人机编队完成探测识别、打击、毁伤评估等一系列时序任务, 通过优化完成任务的总时间或者飞行的总距离来实现任务分配, 更适用于复杂任务分配问题建模, 但可扩展性低; 在考虑系统存在不确定因素和多智能体协同系统时, 可分别通过部分可观测的MDP(partially observable MDP, POMDP)及多智能体的MDP(multi-agent MDP, MMDP)对协同任务分配问题进行建模, 但上述模型均存在通用性较差的缺点。

1.3 无人机集群任务预分配算法研究现状

任务预分配是指在无人机执行作战任务之前, 任务规划平台通过雷达探测或卫星探测等手段提前获得战场中目标点的位置与任务类型等信息, 依据任务预分配算法计算得到各无人机的任务分配决策信息。针对无人机集群任务预分配问题的特点, 要求任务预分配算法能够全面考虑无人机自身约束、环境约束、任务约束等, 根据不完全战场信息得到无冲突的完备解与最优解, 以最大化执行任务所获得的收益。由于任务预分配算法静态结构的特点, 求解相对简单, 因此得到了大量研究成果, 主要分为集中式求解算法和分布式求解算法两种。

1.3.1 多无人机任务预分配集中式求解算法研究现状

集中式求解算法可以分为最优化方法和启发式方法两类[17]。

最优化方法在问题有解的前提条件下, 能够基于简化的假设求解得到问题的最优解, 代表性算法包括穷举法、分支定界、整数规划、动态规划等。但随着无人机数量的增加, 最优化方法求解任务分配问题的难度、计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值