ACM 95. [NOIP2001] Car的旅行路线(最短路)

95. [NOIP2001] Car的旅行路线

★★   输入文件: cardlxlx.in   输出文件: cardlxlx.out    简单对比
时间限制:1 s   内存限制:128 MB

问题描述
又到暑假了,住在城市A的Car想和朋友一起去城市B旅游。她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一 条笔直的高速铁路,第I个城市中高速铁路了的单位里程价格为Ti,任意两个不同城市的机场之间均有航线,所有航线单位里程的价格均为t。
图例



机场 
高速铁路
飞机航线

注意:图中并没有
标出所有的铁路与航线。

那么Car应如何安排到城市B的路线才能尽可能的节省花费呢?她发现这并不是一个简单的问题,于是她来向你请教。
任务
找出一条从城市A到B的旅游路线,出发和到达城市中的机场可以任意选取,要求总的花费最少。
输入文件:键盘输入文件名
输 出:到屏幕(输出最小费用,小数点后保留1位。)
输入格式
第一行为一个正整数n(0<=n<=10),表示有n组测试数据。
每组的第一行有四个正整数s,t,A,B。
S(0<s<=100)表示城市的个数,t表示飞机单位里程的价格,a,b分别为城市a,b的序号,(1<=a,b<=s)。
 接下来有S行,其中第I行均有7个正整数xi1,yi1,xi2,yi2,xi3,yi3,Ti,这当中的(xi1,yi1),(xi2,yi2),(xi3,yi3)分别是第I个城市中任意三个机场的坐标,T I为第I个城市高速铁路单位里程的价格。
输出格式
共有n行,每行一个数据对应测试数据。

样例

输入:

1
3 10 1 3
1 1 1 3 3 1 30
2 5 4 7 5 2 1
8 6 8 8 11 6 3

输出:

47.5

主要就是向量的垂直判断

(x1-x2)*(x3-x2)+(y1-y2)*(y3-y2)=0

然后就是建图每个城市的4个机场之间连边城市之间的机场连边

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <vector>

using namespace std;

#define MAX_S 100
#define MAX_4S 400
#define INF 999999999

struct Point
{
    int x,y;
};

int s,t,A,B;
struct City
{
    Point pt[4];
    int T;
}CITY[MAX_S];
struct Edge
{
    int to;
    double cost;
};
vector<Edge> G[MAX_4S];
bool vis[MAX_4S];

double Dis(Point &A,Point &B)
{
    return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
}

bool IsApeak(Point &A,Point &B,Point &C)
{
    if((A.x-B.x)*(C.x-B.x)+(A.y-B.y)*(C.y-B.y)==0)
    {
        return true;
    }

    return false;
}

Point GetFourthPoint(Point &A,Point &B,Point &C)
{
    Point tmp;

    if(IsApeak(A,B,C))
    {
        tmp.x=C.x+(A.x-B.x);
        tmp.y=C.y+(A.y-B.y);
    }
    else if(IsApeak(A,C,B))
    {
        tmp.x=B.x+(A.x-C.x);
        tmp.y=B.y+(A.y-C.y);
    }
    else if(IsApeak(C,A,B))
    {
        tmp.x=B.x+(C.x-A.x);
        tmp.y=B.y+(C.y-A.y);
    }

    return tmp;
}

double d[MAX_4S];
void Dijkstra(int s)
{
    d[s]=0;

    while(true)
    {
        int v=-1;
        for(int u=0;u<MAX_4S;u++) if(!vis[u] && (v==-1 || d[v]>d[u])) v=u;

        if(v==-1) break;
        vis[v]=true;

        int sz=G[v].size();
        for(int u=0;u<sz;u++) if(!vis[G[v][u].to] && d[G[v][u].to]>d[v]+G[v][u].cost)
            d[G[v][u].to]=d[v]+G[v][u].cost;
    }
}

int main()
{
    int n;

    freopen("cardlxlx.in","r",stdin);
    freopen("cardlxlx.out","w",stdout);

    scanf("%d",&n);

    while(n--)
    {
        scanf("%d%d%d%d",&s,&t,&A,&B);
        A--;B--;
        for(int i=0;i<s;i++)
        {
            for(int j=0;j<3;j++)
                scanf("%d%d",&CITY[i].pt[j].x,&CITY[i].pt[j].y);
            CITY[i].pt[3]=GetFourthPoint(CITY[i].pt[0],CITY[i].pt[1],CITY[i].pt[2]);
            double Price;
            scanf("%lf",&Price);
            CITY[i].T=Price;
            int mi=i*4;
            for(int j=0;j<4;j++)
            for(int k=j+1;k<4;k++)
            {
                Edge tmp1,tmp2;
                double dis=Dis(CITY[i].pt[j],CITY[i].pt[k]);
                tmp1.to=mi+k;
                tmp2.to=mi+j;

                tmp1.cost=dis*Price;
                tmp2.cost=tmp1.cost;
                G[mi+j].push_back(tmp1);
                G[mi+k].push_back(tmp2);
            }
        }

        for(int i=0;i<s;i++)
        {
            int mi=i*4;
            for(int j=i+1;j<s;j++)
            {
                int mj=j*4;
                for(int k=0;k<4;k++)
                for(int l=0;l<4;l++)
                {
                    Edge tmp1,tmp2;
                    double dis=Dis(CITY[i].pt[k],CITY[j].pt[l]);
                    tmp1.to=mj+l;
                    tmp2.to=mi+k;
                    tmp1.cost=dis*t;
                    tmp2.cost=tmp1.cost;
                    G[mi+k].push_back(tmp1);
                    G[mj+l].push_back(tmp2);
                }
            }
        }

        int A4=4*A;
        int B4=4*B;
        double minx=INF;
        memset(vis,0,sizeof(vis));
        for(int i=0;i<MAX_4S;i++) d[i]=INF;
        Dijkstra(A4);

        for(int i=0;i<4;i++)
        {
            minx=min(minx,d[B4+i]);
        }

        memset(vis,0,sizeof(vis));
        for(int i=0;i<MAX_4S;i++) d[i]=INF;
        Dijkstra(A4+1);

        for(int i=0;i<4;i++)
        {
            minx=min(minx,d[B4+i]);
        }
        memset(vis,0,sizeof(vis));
        for(int i=0;i<MAX_4S;i++) d[i]=INF;
        Dijkstra(A4+2);

        for(int i=0;i<4;i++)
        {
            minx=min(minx,d[B4+i]);
        }

        memset(vis,0,sizeof(vis));
        for(int i=0;i<MAX_4S;i++) d[i]=INF;
        Dijkstra(A4+3);

        for(int i=0;i<4;i++)
        {
            minx=min(minx,d[B4+i]);
        }

        printf("%.1lf\n",minx);
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值