http://caioj.cn/problem.php?id=1507
问题描述:
又到暑假了,住在城市A的Car想和朋友一起去城市B旅游。她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单位里程价格为Ti,任意两个不同城市的机场之间均有航线,所有航线单位里程的价格均为t。
那么Car应如何安排到城市B的路线才能尽可能的节省花费呢?她发现这并不是一个简单的问题,于是她来向你请教。找出一条从城市A到B的旅游路线,出发和到达城市中的机场可以任意选取,要求总的花费最少
输入:
第一行为一个正整数n(0≤n≤10),表示有n组测试数据。
第二行有四个正整数S,T,A,B。其中S表示城市的个数,T表示飞机单位里程的价格,A,B分别为城市A,B的序号,(1<=A,B<=S)。
接下来有S行,其中第I行均有7个正整数xi1,yi1,xi2,yi2,xi3,yi3,Ti,这当中的(xi1,yi1),(xi2,yi2),(xi3,yi3)分别是第I个城市中任意三个机场的坐标,T I为第I个城市高速铁路单位里程的价格。
输出:
输出最小费用(结果保留两位小数)
题解:
首先,输入只有三个点,所以我们要求第四个点,这里我们可以用迭代法不停循环,直到x1->x2,x2->x3这两条直线垂直。那么第四个点的坐标就是x1-x2+x3这里画个图就知道了。
然后直接建边,跑最短路,由于数据范围不大直接floyd就好了。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 10000000
#define get(x) (x-1)*4+1
us