常用排序算法总结与分析(含全部源码)

#include<iostream>
using namespace std;
/***************
 * 直接插入排序
 *算法性能:
 *稳定
 *空间代价:Θ(1)
 *时间代价:
 *最佳情况:n-1次比较,2(n-1)次移动,Θ(n)
 *最差情况: Θ(n2)
 ***************/
void InsertSort(int *a,int n);
/*****************
 *   折半插入排序
 *****************/
void BinaryInsertSort(int *a ,int n);
/******************************************************
 *   折半与直接插入排序都是稳定的,时间复杂度都是n^2
 ******************************************************/

void display(int *a,int n);
/*****************
 *希尔排序
 *算法性能:
 *不稳定
 *空间代价:Θ(1)
 *增量每次除以2递减,时间代价:Θ(n2)
 *选择适当的增量序列,可以使得时间代价接近Θ(n)
 *******************/
void ShellInsert(int* pDataArray, int d, int iDataNum);
void ShellSort(int* pDataArray, int iDataNum);
/********************************************
 *冒泡排序,稳定的排序
 ********************************************/
void BubbleSort(int *a,int n);
//void BubbleSort(int Array[], int n);
/*******************************************
 *快速排序
 *性能分析
 *最差情况:
 *时间代价: Θ(n2)
 *空间代价: Θ(n)
 *最佳情况:
 *时间代价:Θ(nlog n)
 *空间代价:Θ(log n)
 *平均情况:
 *时间代价:Θ(nlog n)
 *空间代价:Θ(log n)
 *******************************************/
void quickSort(int a[],int left,int right);
void quickSort2(int a[],int left,int right);

/*******************************************
 *直接选择排序
 *性能分析:
 *不稳定
 *空间代价:O(1)
 *时间代价:比较次数O(n^2),交换次数n-1,总时间代价O(n^2)
 *******************************************/
 void selectSort(int *a,int n);
/******************************************
 *堆排序
 *算法性能:
 *建堆:Θ(n)
 *删除堆顶重新建:Θ(log n)
 *一次建堆,n次删除堆顶
 *总时间代价为Θ(nlog n)
 *空间代价为Θ(1
 *******************************************/
 void heapSort(int *a,int n);
 /*****************************
  *归并排序
  *算法性能
  *稳定
  *空间代价:Θ(n)
  *总时间代价:Θ(nlog n)
  *不依赖于原始数组的输入情况,
  *最大、最小以及平均时间代价均为Θ(nlog n)
  *****************************/
 void mergeSort(int *a,int start,int end);
int main(){
    int a[8] = {2,1,4,6,3,5,4,7};
    //InsertSort(a,8);
    //BinaryInsertSort(a,8);
    //ShellSort(a,8);
    //BubbleSort(a,8);
    //quickSort2(a,0,7);
    //selectSort(a,8);
    //heapSort(a,8);
    mergeSort(a,0,7);
    display(a,8);

    return 0;
}

//直接插入排序
void InsertSort(int *a,int n){
    int temp=0;
    int j=0;
    int i;
    for( i=1;i<n;i++){
        j=i-1;
        temp = a[i];
        while((j>=0)&&(a[j]>temp)){
            a[j+1] = a[j];
            j--;
        }
        a[j+1] = temp;
    }


}
//输出函数
void display(int *a ,int n){
    int i;
     for(i=0;i<n;i++){
        cout<<a[i]<<" ";
    }
}

//折半插入排序
void BinaryInsertSort(int *a,int n){
    int temp,i,j,left,right,middle;

    for(i=1;i<n;i++){
        temp = a[i];
        left = 0;
        right = i-1;
       while(left<=right){              //必须要有“=”
            middle = (left+right)/2;
            if(a[i]>a[middle]){
                left = middle + 1 ;
            }
            else{
                right = middle - 1;
            }
       }
       for(j=i-1;j>=left;j--){          //必须要有“=”
            a[j+1] = a[j];
       }
       a[left] = temp;

    }

}



/********************************************************
*函数名称:ShellInsert
*参数说明:pDataArray 无序数组;
*          d          增量大小
*          iDataNum为无序数据个数
*说明:    希尔按增量d的插入排序
*********************************************************/
void ShellInsert(int* pDataArray, int d, int iDataNum)
{
    for (int i = d; i < iDataNum; i += d)    //从第2个数据开始插入
    {
        int j = i - d;
        int temp = pDataArray[i];    //记录要插入的数据
        while (j >= 0 && pDataArray[j] > temp)    //从后向前,找到比其小的数的位置
        {
            pDataArray[j+d] = pDataArray[j];    //向后挪动
            j -= d;
        }

        if (j != i - d)    //存在比其小的数
            pDataArray[j+d] = temp;
    }
}

/********************************************************
*函数名称:ShellSort
*参数说明:pDataArray 无序数组;
*          iDataNum为无序数据个数
*说明:    希尔排序
*********************************************************/
void ShellSort(int* pDataArray, int iDataNum)
{
    int d = iDataNum / 2;    //初始增量设为数组长度的一半
    while(d >= 1)
    {
        ShellInsert(pDataArray, d, iDataNum);
        d = d / 2;    //每次增量变为上次的二分之一
    }
}


/****************************
 *冒泡排序
 ****************************/
void BubbleSort(int *a,int n){
    int i,j,temp;
    bool flag;//用于记录是否发生交换的标志
    for(i=0;i<n-1;i++){
            flag = true;
            for(j = 1;j<n-i;j++){
                if(a[j]<a[j-1]){
                   temp = a[j];
                   a[j] = a[j-1];
                   a[j-1] = temp;
                   flag = false;//如果有一趟没有发生交换的话,证明整个排序已经完成就不用在进行下面的冒泡
                }
            }
            if(flag)
                return ;
        }
}


/********************************************************
 *快速排序 分割算法1,返回轴值的记录
 ********************************************************/

 int Partition1(int a[],int left ,int right){
    //实现对从a[left],到a[right]的分割操作,并返回划分后轴元素的位置
    int pivot = a[left];    //选取第一个元素作为轴元素
    while(left < right){
        while(left<right&&a[right]>pivot){  //从右边开始找到一个小于轴元素的位置
            right --;
        }
        a[left] = a[right];                 //将right位置上的数据放到left(原轴元素)的位置上
        while(left<right&&a[left]<=pivot){   /*******等号不能省去***/
            left ++;
        }
        a[right] = a[left];                 //将left位置上的元素移动到right位置上, 此时left位置空出

    }
        a[left] = pivot;

     return left;                        //返回轴元素的位置,实现分治
 }


 int Partition2(int a[],int start,int end){
        int pivot = a[start];
        int temp;
        int left = start,right = end;
        while(left<=right){
            while(left<=right&&a[left]<=pivot){
                left++;
                }
            while(left<=right&&a[right]>pivot){
                right --;
            }
            if(left<right){

                temp = a[left];
                a[left] = a[right];
                a[right] = temp;
                left ++;
                right --;
            }
        }
        //cout<<left<<"***"<<right<<endl;
        /*****交换轴元素与right位置的值*****/
        temp =a[right];
        a[right] = a[start];
        a[start] = temp;
        return right;
 }
 void quickSort(int a[],int left,int right){
    if(left<right){
        int p = Partition1(a,left,right);
        quickSort(a,left,p-1);
        quickSort(a,p+1,right);
        }
 }
  void quickSort2(int a[],int left,int right){
    if(left<right){
        int p = Partition2(a,left,right);
        quickSort2(a,left,p-1);
        quickSort2(a,p+1,right);
        }
 }
 /*******************************************
  *直接选择排序
  *******************************************/
 void selectSort(int *a,int n){
    int small,i,j;
    for(i=0;i<n;i++){
        small = i;   //假设最小的值就是i位置上的值
        for(j=i+1;j<n;j++){
            if(a[j]<a[small]){
                // 如果发现更小的记录,记录它的位置
                small = j;
            }
        }
        if(small!=i){
            //当发现i位置的值不是最小的时候则进行交换
            int temp = a[i];
            a[i] = a[small];
            a[small] = temp;
        }
    }
 }

/******************************
 *堆排序
 ******************************/
 void siftDown(int *a,int i ,int n){
    int leftChild = 2*i+1;
    int rightChild = 2*i+2;
    int minRoot = i;
    if(n>leftChild&&a[minRoot]<a[leftChild]){
        minRoot = leftChild;
    }
    if(n>rightChild&&a[minRoot]<a[rightChild]){
        minRoot = rightChild;
    }
    if(minRoot!=i){//当根节点不是最小值的时候
        int temp = a[i];
        a[i] = a[minRoot];
        a[minRoot] = temp;
        siftDown(a,minRoot,n);//递归对子节点进行调整
    }

 }
 void buildHeap(int *a,int n){
        int p = n/2 -1;//记录非叶子节点的最大下标,因为叶子节点不用进行调整
        for(int i=p;i>=0;i--){
            siftDown(a,i,n);
        }
 }
 void heapSort(int *a ,int n){
    buildHeap(a,n);//构建最大堆
    for(int i = n-1;i>0;i--){
        int temp = a[i];    //将堆顶的值跟最后一个值进行交换,这是该元素就被放在了正确的位置上
        a[i] = a[0];
        a[0] = temp;
        siftDown(a,0,i);
    }

 }

/**************归并排序*********************/
//合并一个序列中的两个有序子序列

void Merge(int *a,int start,int mid,int end){
   // cout<<"s:"<<start<<"  "<<"m:"<<mid<<"  "<<"e:"<<end<<endl;
    int len1 = mid - start +1 ;
    int len2 = end - mid +1 ;

    int i;
    int j;
    int k;
    //临时数组存放a[start,mid]和a[mid+1,end]的值
    int * left = new int[len1];
    int * right = new int[len2];
    for(i=0;i<len1;i++){
        left[i] = a[i+start];
    }
    for(i=0;i<len2;i++){
        right[i] = a[i+mid+1];
    }
    //合并left,right
    i = 0; j = 0; k = 0;
    for(k = start;k<end;k++){
        if(i==len1||j==len2){
            break;
        }
        if(left[i]<=right[j]){
            a[k] = left[i];
            i++;
        }else{
            a[k] = right[j];
            j++;
        }
    }
    while(i<len1){
        a[k] = left[i];
        k++;
        i++;
    }
    while(j<len2){
        a[k] = right[j];
        k++;
        j++;
    }
    delete[] left;
    delete[] right;
}

void mergeSort(int *a,int start,int end){
    //cout<<"start:"<<start<<"   "<<"end:"<<end<<endl;
    if(start<end){
        int mid = (start+end)/2;
       // cout<<"start:"<<start<<"   "<<"end:"<<end<<endl;
       // cout<<"left"<<" "<<"mid:"<<mid<<"end:"<<end<<endl;
        mergeSort(a,start,mid);
       // cout<<"right"<<" "<<"mid:"<<mid<<"end:"<<end<<endl;
        mergeSort(a,mid+1,end);
        Merge(a,start,mid,end);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值