Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ]
Given target = 5
, return true
.
Given target = 20
, return false
.
思路:从网上参考的思路:
从左下角(或者右上角)开始搜索,因为矩阵行列有序,分情况讨论:
(1)如果当前元素大于target,则上移一行,即减小当前元素的值
(2)如果当前元素小于target,则右移一行,即增大当前元素的值
(3)如果相等,返回true,超过矩阵边界,返回false
ps:不能从右下角开始搜索,如果这样,target大于当前值则target在矩阵中不存在,小于的话坐标变化方式不唯一处理复杂。另外,矩阵的值也是矩阵对角线方向依次递增。
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int row = matrix.length;
int col = matrix[0].length;
int i = row - 1;
int j = 0;
while(i >= 0&&j >= 0&&i < row&&j < col){
if( matrix[i][j] == target ){
return true;
}
else if( matrix[i][j] > target){
i -- ;
}
else if( matrix[i][j] < target){
j ++ ;
}
}
return false;
}
}