python多进程与多线程使用

本文介绍了Python中的多线程和多进程,强调了它们的特点与适用场景。多线程适合I/O密集型任务,而多进程在计算密集型任务中表现出更高的效率。重点讲解了`multiprocessing`模块,包括进程池的使用和进程间共享对象的方法,如共享内存、Manager服务进程。同时提到了`concurrent.futures`模块作为更高级别的并发接口。最后,列举了多进程使用中可能遇到的问题及其解决方案。
摘要由CSDN通过智能技术生成

简介

关于多进程和多线程的详细介绍参考其他资料,这里仅列出一些显著特征,用于帮助实际使用时选择哪种方法。

多线程

  • 多线程之间共享内存和变量;
  • 创建线程总体资源消耗较低;
  • 由于GIL锁,只能使用单核,性能一般较低,特殊情况甚至低于串行;
  • 适用于I/O密集型任务,比如大量文件读写,网络请求(文件下载)等;

多进程

  • 进程间无法直接共享内存,需要使用其他方法,否则内存消耗巨大;
  • 创建进程总体资源消耗较高;
  • 完全并发执行,效率高;
  • 适用于计算密集型,充分利用多核CPU;

常用模块

以下以多进程为例。

multiprocessing

  1. 手动创建进程Process
def download(url):
	res = requests.get(url)
	return res
	
processes = []
for url in urls:
	processes.append(Process(target = download,args
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值