Python——多线程与多进程

本文探讨了如何使用Python的threading和multiprocessing模块解决多线程下银行账户余额并发问题,通过Lock实现线程同步,以及为何多进程在计算密集型任务中更优,通过GIL和Manager对象演示进程间通信。
摘要由CSDN通过智能技术生成

1、多线程
当有多个线程,并且在这个几个线程中都会去调用deposit,就有可能同时操作这个bank对象,就有可能出一个线程覆盖另外一个线程的结果的问题。这时,可以使用 threading库里面的锁对象 Lock 去保护。

from threading import Thread,Lock
from time import sleep

bank = {
    'byhy' : 0
}

bankLock = Lock()

# 定义一个函数,作为新线程执行的入口函数
def deposit(theadidx,amount):
    # 操作共享数据前,申请获取锁
    bankLock.acquire()
    
    balance =  bank['byhy']
    # 执行一些任务,耗费了0.1秒
    sleep(0.1)
    bank['byhy']  = balance + amount
    print(f'子线程 {theadidx} 结束')
    
    # 操作完共享数据后,申请释放锁
    bankLock.release()

theadlist = []
for idx in range(10):
    thread = Thread(target = deposit,
                    args = (idx,1)
                    )
    thread.start()
    # 把线程对象都存储到 threadlist中
    theadlist.append(thread)

for thread in theadlist:
    thread.join()

print('主线程结束')
print(f'最后我们的账号余额为 {bank["byhy"]}')

运行结果:
子线程 0 结束
子线程 1 结束
子线程 2 结束
子线程 3 结束
子线程 4 结束
子线程 5 结束
子线程 6 结束
子线程 7 结束
子线程 8 结束
子线程 9 结束
主线程结束
最后我们的账号余额为 10

2、多进程
Python 官方解释器的每个线程要获得执行权限,必须获取一个叫 GIL(全局解释器锁)的东西。这就导致了 Python 的多个线程其实并不能同时使用多个CPU核心。所以如果是计算密集型的任务,不能采用多线程的方式,而要采用多进程的方式。

from multiprocessing import Process,Manager
from time import sleep

def f(taskno,return_dict):
    sleep(2)
    # 存放计算结果到共享对象中
    return_dict[taskno] = taskno

if __name__ == '__main__':
    manager = Manager()
    # 创建 类似字典的 跨进程 共享对象
    return_dict = manager.dict()
    plist = []
    for i in range(10):
        p = Process(target=f, args=(i,return_dict))
        p.start()
        plist.append(p)

    for p in plist:
        p.join()

    print('get result:')
    # 从共享对象中取出其他进程的计算结果
    for k,v in return_dict.items():
        print (k,v)

运行结果:
get result:
0 0
2 2
3 3
1 1
4 4
9 9
5 5
7 7
6 6
8 8

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值