无向图的割顶和桥

给定一个无向连通图,有以下定义:
  1. 割顶:如果去掉一个节点,可以把这个无向连通图变成两个连通图,称其为割顶
  2. :同理,如果去掉一条边,可以把这个连通图变成两个,称其为桥
求割顶和桥:
  1. 令一个点为根,从这个点开始dfs
  2. 用pre表示时间戳,每搜到一个还未搜到的点,标记搜到他的时间
  3. 用low[]表示一个点可以连接的时间最早的点,而如果这个值还没有它的父亲的时间早或等于他父亲的时间,那么这个点的父亲一定是割顶

    如图(出自《算法竞赛入门经典训练指南》–刘汝佳)
    这里写图片描述

  4. 而如果这个值严格大于他父亲的时间,则连接他父亲和他的的这条边一定是桥
  5. 如果一个点没有父亲,且只有一个儿子,那么他是根且一定不是割顶
//无向连通图的割顶与桥 
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = 1000 + 10;
int n, m;
int iscut[MAXN];    //是否为割顶
int isbri[MAXN];    //是否为桥 
int tim;
int low[MAXN], pre[MAXN];

int head[MAXN], cnt;
struct edge
{
    int to, next, num;
} e[MAXN];
void add(int u, int v, int y)
{
    e[++cnt].next = head[u];
    head[u] = cnt;
    e[cnt].to = v;
    e[cnt].num = y;
}

int dfs(int u, int fa)
{
    int lowu = pre[u] = ++tim;
    int child = 0;
    for(int i = head[u]; i; i = e[i].next)
    {
        int v = e[i].to;
        if(!pre[v])
        {
            child++;
            int lowv = dfs(v, u);
            lowu = min(lowu, lowv);    //用其子节点的low更新low值
            if(lowv >= pre[u])    //如果v点的后代只能连到v自己,则该边为桥,且u为割顶,若还可以连到u,则u仍为割顶且该边不为桥 
            {
                if(lowv > pre[u]) isbri[e[i].num] = true;
                iscut[u] = true;
            } //{iscut[u] = true; isbri[e[i].num] = true;}
        }
        else if(pre[v] < pre[u] && v != fa) lowu = min(lowu, pre[v]);   //从他连到其父亲的边不是反向边,如果删除他父亲是不能连通的,重点
    }
    if(fa <= 0 && child == 1) iscut[u] = 0;  //如果u为根且只有一个儿子,不是割顶 
    low[u] = lowu;
    return low[u];
}


int main()
{
    int n, m;
    cin >> n >> m;
    for(int i = 1; i <= m; i++)
    {
        int u, v; cin >> u >> v;
        add(u, v, i); add(v, u, i);
    }



    dfs(1, 0);

    for(int i = 1; i <= n; i++)
        if(iscut[i]) cout << i << " ";

    cout << endl;
    for(int i = 1; i <= m; i++)
        if(isbri[i]) cout << i << " ";

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值