给定一个无向连通图,有以下定义:
- 割顶:如果去掉一个节点,可以把这个无向连通图变成两个连通图,称其为割顶
- 桥:同理,如果去掉一条边,可以把这个连通图变成两个,称其为桥
求割顶和桥:
- 令一个点为根,从这个点开始dfs
- 用pre表示时间戳,每搜到一个还未搜到的点,标记搜到他的时间
用low[]表示一个点可以连接的时间最早的点,而如果这个值还没有它的父亲的时间早或等于他父亲的时间,那么这个点的父亲一定是割顶
如图(出自《算法竞赛入门经典训练指南》–刘汝佳)
- 而如果这个值严格大于他父亲的时间,则连接他父亲和他的的这条边一定是桥
- 如果一个点没有父亲,且只有一个儿子,那么他是根且一定不是割顶
//无向连通图的割顶与桥
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = 1000 + 10;
int n, m;
int iscut[MAXN]; //是否为割顶
int isbri[MAXN]; //是否为桥
int tim;
int low[MAXN], pre[MAXN];
int head[MAXN], cnt;
struct edge
{
int to, next, num;
} e[MAXN];
void add(int u, int v, int y)
{
e[++cnt].next = head[u];
head[u] = cnt;
e[cnt].to = v;
e[cnt].num = y;
}
int dfs(int u, int fa)
{
int lowu = pre[u] = ++tim;
int child = 0;
for(int i = head[u]; i; i = e[i].next)
{
int v = e[i].to;
if(!pre[v])
{
child++;
int lowv = dfs(v, u);
lowu = min(lowu, lowv); //用其子节点的low更新low值
if(lowv >= pre[u]) //如果v点的后代只能连到v自己,则该边为桥,且u为割顶,若还可以连到u,则u仍为割顶且该边不为桥
{
if(lowv > pre[u]) isbri[e[i].num] = true;
iscut[u] = true;
} //{iscut[u] = true; isbri[e[i].num] = true;}
}
else if(pre[v] < pre[u] && v != fa) lowu = min(lowu, pre[v]); //从他连到其父亲的边不是反向边,如果删除他父亲是不能连通的,重点
}
if(fa <= 0 && child == 1) iscut[u] = 0; //如果u为根且只有一个儿子,不是割顶
low[u] = lowu;
return low[u];
}
int main()
{
int n, m;
cin >> n >> m;
for(int i = 1; i <= m; i++)
{
int u, v; cin >> u >> v;
add(u, v, i); add(v, u, i);
}
dfs(1, 0);
for(int i = 1; i <= n; i++)
if(iscut[i]) cout << i << " ";
cout << endl;
for(int i = 1; i <= m; i++)
if(isbri[i]) cout << i << " ";
return 0;
}