无向图的割顶和桥,无向图的双连通分量入门详解及模板

割顶和桥:对于无向图G,如果删除某个节点u后,连通分量数目增加,则称u为图的割顶;如果删除某条边后,连通分量数目增加,则称该边为图的桥。对于连通图删除割顶或桥后都会使得图不再连通

以下我,我们利用dfs的性质来快速找出一个连通图中的所有的割顶和桥
首先我们要引入”时间戳”这个概念:

时间戳:表示在进行dfs时,每个节点被访问的先后顺序。每个节点会被标记两次,分别用pre[],和post[]表示。
例如下图的时间戳表示:(节点左上角为pre[],右上角为post[],子节点的访问顺序按照编号从小到达访问)
这里写图片描述

图中的边分类:
树边与反向边:在进行dfs时某条边u-v,若v还没有被访问,则u-v为树边,若v已经被访问过则u-v为反向边。
对于上图的DFS树,下图中实线为树边,虚线为反向边
这里写图片描述
在无向图中除了树边就是反向边,且不存在跨越两棵子树的边
所以对于根节点而言,如果有两个及以上节点则根节点为割顶,否则不是
对于其他节点:在无向连通图G的DFS树中,非根节点u是割顶当且仅当u存在一个子节点v,使得v及其所有后代都没有反向边连回u的祖先(不包括u)
以上判断条件很好想,只要随便画画草图就可以了

了解以上知识后我们找出图中所有的割顶和桥
设low[u]为u及其后代所能连回的最早的祖先的pre[]值,则当u存在一个子节点v使得low[v] >= pre[u]时u就为割顶
同理当 low[v] > pre[u]时 u-v为桥

求图中割顶和桥的代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
using namespace std;

const int maxn = 1000;

int n,m;
vector<int> G[maxn];
int low[maxn],pre[maxn];
int dfs_clock;     //时间戳
int iscut[maxn];   //标记是否为割顶

int dfs(int u,int fa)
{
    int lowu = pre[u] = ++dfs_clock;
    int child = 0;
    for(int i=0;i<G[u].size();i++)
    {
        int v = G[u][i];
        if(!pre[v])     //没有访问的v
        {
            child++;    //孩子节点的数目
            int lowv = dfs(v,u);
            lowu = min(lowu,lowv);    //用后代更新lowu
            if(lowv >= pre[u]) iscut[u] = 1;
            if(lowv > pre[u]) cout<<"桥:"<<u<<"-"<<v<<endl;
        }
        else if(pre[v] < pre[u] && v
  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值