无向图求割顶与桥
对于无向图G,如果删除某个点u后,连通分量数目增加,称u为图的关节点或割顶。对于连通图,割顶就是删除之后使图不再连通的点。如果删除边(u,v)一条边,就可以让连通图变成不连通的,那么边(u,v)是桥。
具体的概念和定义比较多,在刘汝佳<<训练指南>>P312-314页都有详细的介绍。
下面来写求无向图割顶和桥的DFS函数.我们令pre[i]表示第一次访问i点的时间戳,令low[i]表示i节点及其后代所能连回(通过反向边)的最早祖先的pre值.
下面的dfs函数返回的是当前遍历的节点u的low值.如果u是割顶还会标记u节点.且如果u->v(v是u的儿子节点)边是桥也会标记该边.
//求无向图的割顶和桥
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=100000+10;
int n,m;
int dfs_clock;//时钟,每访问一个节点增1
vector<int> G[maxn];//G[i]表示i节点邻接的所有节点
int pre[maxn];//pre[i]表示i节点被第一次访问到的时间戳,若pre[i]==0表示i还未被访问
int low[maxn];//low[i]表示i节点及其后代能通过反向边连回的最早的祖先的pre值
bool iscut[maxn];//标记i节点是不是一个割点
//求出以u为根节点(u在DFS树中的父节点是fa)的树的所有割顶和桥
//初始调用为dfs(root,-1);
int dfs(int u,int fa)
{
int lowu=pre[u]=++dfs_clock;
int child=0; //子节点数目
for(int i=0; i<G[u].size(); i++)
{
int v=G[u][i];
if(!pre[v])
{
child++;//未访问过的节点才能算是u的孩子
int lowv=dfs(v,u);
lowu=min(lowu,lowv);
if(lowv>=pre[u])
{
iscut[u]=true; //u点是割顶
if(lowv>pre[u]) //(u,v)边是桥
printf("边(%d, %d)是桥\n",u,v);
}
}
else if(pre[v]<pre[u] && v!=fa)//v!=fa确保了(u,v)是从u到v的反向边
{
lowu=min(lowu,pre[v]);
}
}
if(fa<0 && child==1 )
iscut[u]=false;//u若是根且孩子数<=1,那u就不是割顶
return low[u]=lowu;
}
int main()
{
while(scanf("%d%d",&n,&m)==2&&n)
{
dfs_clock=0;//初始化时钟
memset(pre,0,sizeof(pre));
memset(iscut,0,sizeof(iscut));
for(int i=0;i<n;i++) G[i].clear();
for(int i=0;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(0,-1);//初始调用
for(int i=0;i<n;i++)if(iscut[i]==true)
printf("割顶是:%d\n",i);
}
return 0;
}
删除一个无向图中的点,能使得原图增加几个连通分量呢?
如果该点是一个孤立的点,那么增加-1个。
如果该点不是割点,那么增加0个。
如果该点是割点且非根节点,那么增加该点在dfs树中(无反向边连回早期祖先的)的儿子数。
如果该点是割点且是一个dfs树的根节点,那么增加该点在dfs树中(无反向边连回早期祖先的)的儿子数-1的数目。
基本应用
POJ 1144 Network(简单求无向图割顶数):直接求割顶数。解题报告!
POJ 2117 Electricity(无向图割点):问删除一点能增加几个连通分量。解题报告!
POJ 1523 SPF(割点所割连通分量数): 问删除一点能增加几个连通分量。解题报告!
HDU 4587 TWO NODES(无向图割点):还是关于删除一个点能剩余几个连通分量的问题。解题报告!
HDU 3849 By Recognizing…(求无向图的桥数目):如何在dfs完之后判断一条边是否是桥?解题报告!
HDU 4738 Caocao's Bridges(重边无向图求桥):有重边的无向图如何求桥边?解题报告!