论文:Fuzzy Analytic Hierarchy Process: A performance analysis of various algorithms(查题目了才知道原来Fuzzy是模糊的意思哈哈哈哈对8起
<一>那么什么是FAHP和AHP呢?
该类方法对于量化评价指标,选择最优方案提供了依据。(原来是决策相关方法
AHP存在如下方面的缺陷:检验判断矩阵是否一致非常困难,且检验判断矩阵是否具有一致性的标准CR < 0. 1缺乏科学依据;判断矩阵的一致性与人类思维的一致性有显著差异。
模糊层次分析法的基本思想和步骤与AHP的步骤基本一致,但仍有以下两方面的不同点:
(1)建立的判断矩阵不同:在AHP中是通过元素的两两比较建立判断一致矩阵;而在FAHP中通过元素两两比较建立模糊一致判断矩阵,实质上是由确切数衡量元素之间的关系变成模糊数来衡量
(2)求矩阵中各元素的相对重要性的权重的方法不同
AHP过程详解:
(1)层次模型:最顶层是我们的优化目标,中间层是判断候选方物或人优劣的因素或标准,最下面是候选方案。下图为最简单的三层结构,影响因素只有一层,也有多级多层次的影响因素,例如一级指标、影响一级指标的二级指标等。
是下层的因素影响上层,所以每一分支中下层的权重和加起来等于上层的权重和。
(2)判断矩阵
判断矩阵是衡量两两元素之间相对关系的矩阵,元素的物理意义是横排元素相对竖排元素的重要程度,用1-9来衡量
上图说半天也就是1-9依次重要性大大递增的关系,另外倒数关系使得判断矩阵满足正互反矩阵的要求。
1.从主观到客观 最后会殊途同归(因为都要满足一致性检验)但是仍然不能保证完全没有主观因素
2.判断矩阵是针对每一层次的 也就是每一个层次都有一个判断矩阵 只要你是同一层次的不同指标 就有一个判断矩阵 这样侧能一层一层地把权重分下去 同样要满足一致性检验的要求
(3)一致性检验
一致性矩阵定义:
只要判断矩阵满足一致性矩阵的定义,那么判断矩阵的权重分配就是成功的。
但是大部分判断矩阵显然不满足一致性(“画直角三角形”计算原则,要求挺高的,用几何形式去定义,就是先确定一个ij点,再在第j行上选一个点(jk),再从这个点(jk)往第i行做投影即可),但是一致性检验只需要满足CR=(CI/RI)<0.1即可。
(4)权重向量
一旦满足一致性,则权重向量则为最大特征值对应的特征向量归一化之后的结果。
FAHP过程详解:
如文章开头所述,FAHP与AHP本质的区别是AHP用确切数(crisp number)衡量元素之间的关系,FAHP用模糊数(fuzzy number)衡量元素之间的关系!而至于元素之间的关系是乘性还是加性,这个不是FAHP和AHP的本质区别。由此,下面这篇文章在定义上是有错误的。之前误导了我,也误导了大家,还好找老师问清楚了,希望之前看到这篇文章的朋友能再看一眼我的更新,不要被误导。https://wiki.mbalib.com/wiki/%E6%A8%A1%E7%B3%8A%E5%B1%82%E6%AC%A1%E5%88%86%E6%9E%90%E6%B3%95
除了上述区别之外,其他流程在总线上都是一样的,什么判断矩阵啊、一致性检测啊、由判断矩阵求最终的权重向量啊,只是在计算方法上有不同。毕竟FAHP是由AHP来的嘛。
<二>论文详解来了,正式进入FAHP
写这篇文章的是一个来自土耳其某大学的大好人,把FAHP方法常用的不常用的都凑一块儿(最早的论文是1983的古董论文,各位朋友应该还没出生呢吧,也是没谁了),其中常用的呢,五种,鉴于论文已经长达十九页,再加页就丧尽天良了,就没有再bb,只是把不常用的剩下四种简单介绍了下。接下来就进入实验环节了,当然前期要告诉你我这个实验流程。最开始生成准备材料,也就是要拿来被计算的这个判断矩阵(由标准答案增加模糊度和不一致性而来,标准答案就是完全一致的判断矩阵)以及它的标准答案,准备好了就直接扔进算法里面在不同条件下折腾出结果就好了。这个实验是典型的控制变量法(有仨变量:矩阵大小,模糊度,一致性),也就是对比试验,呜呜呜,想起来了被高中生物支配的恐惧。通过实验选拔出俩表现优秀的尖子生,一个叫modified LLSM,一个叫FICSM。惊了其实,因为这俩平时都挺默默无闻的 ,大家最喜欢拿来搞事儿的FEA反而在这次试验中表现不佳。但是毕竟FEA流量最大,不得不提下,你要用也行,最好把模糊度搞高点再用效果好些,苦口婆心和卑卑微微,哈哈哈哈哈。
好了,论文主要就是上面我说的这一大堆&#x