kaggle数据挖掘竞赛--信用卡违约风险评估模型

本例程是通过客户提供的信息分析客户会产生违约的可能性。由此来判断是否要给客户提供贷款。背景内容不再多说,数据相关的解释在代码中会有注释。运行中缺失的包请自行安装,我这里的环境是anaconda

直接上代码:

import numpy as no
import pandas as pd
import os

import seaborn as sns
color = sns.color_palette()

import matplotlib.pyplot as plt
%matplotlib inline
import plotly.offline as py
py.init_notebook_mode(connected=True)
from plotly.offline import init_notebook_mode,iplot
init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.offline as offline
offline.init_notebook_mode()

import cufflinks as cf
cf.go_offline()
#下面开始加载数据
df_train = pd.read_csv('./dataset/Home_Credit/application_train.csv')
df_test  = pd.read_csv('./dataset/Home_Credit/application_test.csv')
#看看都有哪些属性
df_train.columns.values

#属性很多,有点吓人

print(df_train.shape)

#(307511, 122)

df_train.head()

#检查application_train 中的缺失数据
total = df_train.isnull().sum().sort_values(ascending = False)
percent = (df_train.isnull().sum()/df_train.isnull().count()*100).sort_values(ascending=False)
missing_application_train_data = pd.concat([total,percent],axis = 1,keys=['Toatl','Percent'])
missing_application_train_data.head(10)

#开始探索我们的数据


#贷款金额 分布

plt.figure(figsize=(12,5))
plt.title("Distribution of AMT_CREDIT")
ax = sns.distplot(df_train["AMT_CREDIT"])

#客户年收入(大部分人都是在50000以下)
plt.figure(figsize=(12,5))
plt.title("Distribution of AMT_INCOME_TOTAL")
ax = sns.distplot(df_train["AMT_ANNUITY"].dropna())

#消费贷款,对应贷款的商品的价格
plt.figure(figsize=(12,5))
plt.title("Distribution of AMT_GOODS_PRICE")
ax = sns.distplot(df_train['AMT_GOODS_PRICE'].dropna())

#申请贷款的时候客户的陪同人
temp = df_train["NAME_TYPE_SUITE"].value_counts()
trace = go.Bar(
    x = temp.index,
    y = (temp / temp.sum())*100,
)
data = [trace]
layout = go.Layout(
    title = "Distribution of Name of type of the Suite in % ",
    xaxis=dict(
        title='Name of type of the Suite',
        tickfont=dict(
            size=14,
            color='rgb(107, 107, 107)'
        )
    ),
    yaxis=dict(
        title='Count of Name of type of the Suite in %',
        titlefont=dict(
            size=16,
            color='rgb(107, 107, 107)'
        ),
        tickfont=dict(
            size=14,
            color='rgb(107, 107, 107)'
        )
)
)
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='schoolStateNames')

#如下图看来一个人的时候发生贷款的概率更高,有人陪同估计不好意思

 

#是否发生逾期未还的情况分布,看来绝大多数人还是守信用的
temp = df_train["TARGET"].value_counts()
df = pd.DataFrame({'labels': temp.index,
                   'values': temp.values
                  })
df.iplot(kind='pie',labels='labels',values='values', title='Loan Repayed or not')

#贷款是现金还是循环的标识 (就是一次性拿到全部贷款还是当前只拿部分在后面需要的时候再拿)
temp = df_train["NAME_CONTRACT_TYPE"].value_counts()
fig = {
  "data": [
    {
      "values": temp.values,
      "labels": temp.index,
      "domain": {"x": [0, .48]},
      #"name": "Types of Loans",
      #"hoverinfo":"label+percent+name",
      "hole": .7,
      "type": "pie"
    },
    
    ],
  "layout": {
        "title":"Types of loan",
        "annotations": [
            {
                "font": {
                    "size": 20
                },
                "showarrow": False,
                "text": "Loan Types",
                "x": 0.17,
                "y": 0.5
            }
            
        ]
    }
}
iplot(fig, filename='donut')

#如下图可知绝大部分人都只是会拿到贷款全部额度,毕竟贷款一般是解燃眉之急,很少有人贷款回来慢慢用。

#是否有房/车
#FLAG_OWN_CAR 客户是否拥有汽车
#FLAG_OWN_REALTY  客户是否拥有房屋或公寓

temp1 = df_train["FLAG_OWN_CAR"].value_counts()
temp2 = df_train["FLAG_OWN_REALTY"].value_counts()

fig = {
  "data": [
    {
      "values": temp1.values,
      "labels": temp1.index,
      "domain": {"x": [0, .48]},
      "name": "Own Car",
      "hoverinfo":"label+percent+name",
      "hole": .6,
      "type": "pie"
    },
    {
      "values": temp2.values,
      "labels": temp2.index,
      "textposition":"inside",
      "domain": {"x": [.52, 1]},
      "name": "Own Reality",
      "hoverinfo":"label+percent+name",
      "hole": .6,
      "type": "pie"
    }],
  "layout": {
        "title":"Purpose of loan",
        "annotations": [
            {
                "font": {
                    "size": 20
                },
                "showarrow": False,
                "text": "Own Car",
                "x": 0.20,
                "y": 0.5
            },
            {
                "font": {
                    "size": 20
                },
                "showarrow": False,
                "text": "Own Reality",
                "x": 0.8,
                "y": 0.5
            }
        ]
    }
}
iplot(fig, filename='donut')

#如下图看下来,多数贷款的人是有房没车的人。有房没车估计也是底层人民啊,这符合我们正常的认知,没有住所的人去贷款估计也很难通过(谁愿意借钱给流浪汉呢)

# 收入类型
# 工作/商业助理/退休人员/公务员/失业/学生/商人/产假
temp = df_train['NAME_INCOME_TYPE'].value_counts()
df = pd.DataFrame({'labels':temp.index,
                    'values':temp.values})
df.iplot(kind='pie',labels='labels',values='values',title='Income sources of Applicant\'s',hole=0.5)

#多数人还是上班族(干得多拿得少,万恶的资本主义)

#贷款申请人的家庭状况
#结婚(有宗教或教堂参与的)/单身/民事婚姻(类似中国有政府部门颁发结婚证的民间组织的婚姻)/分离/寡(应该是丧偶)/未知
temp = df_train['NAME_FAMILY_STATUS'].value_counts()
df = pd.DataFrame({'labels':temp.index,
                  'values':temp.values})

df.iplot(kind='pie',labels='labels',values='values',title='Family Status of Applicant\'s',hole=0.6)
#除了正常已婚人士,单身汉也不少,看来单身汉是真缺钱(要不然也不会单身是吧)

#申请人的职业

temp = df_train['OCCUPATION_TYPE'].value_counts()
# df = pd.DataFrame({'labels':temp.index,
#                   'values':temp.values})
# df.iplot(kind='pie',labels='labels',values='values',title='Family Status of Applicant\'s',hole=0.6)


temp.iplot(kind='bar',xTitle='Occupation',yTitle='Count',title='Occupation of Applicatnt\'s who applied for loan',color='green')

#看看下图,最缺钱的是伟大的劳动者,最不缺钱的竟然是我们IT人员(看来是我拖大家的后腿了)

#申请人的教育情况

temp = df_train['NAME_EDUCATION_TYPE'].value_counts()
df = pd.DataFrame({'labels':temp.index,
                  'values':temp.values})

df.iplot(kind='pie',labels='labels',values='values',title='Education od Applicant\'s',hole=0.5)
#Secondary special 中等专业学校学历的人最缺钱,然后是Higher education高等教育,难道是学历越高眼界越高,欲望越多,压力越大(也有可能是其他的情况,比如学历底了收入少、还款能力底,贷款批不下来,也就不再去申请贷款了)

#住房情况



temp = df_train["NAME_HOUSING_TYPE"].value_counts()
df = pd.DataFrame({'labels': temp.index,
                   'values': temp.values
                  })
df.iplot(kind='pie',labels='labels',values='values', title='Type of House', hole = 0.5)

#住父母房子的人贷款的是最多的(难道是生活压力小只想这享乐了,合租的人很少去贷款估计是要攒钱改善生活吧)

#工作机构类型
temp = df_train["ORGANIZATION_TYPE"].value_counts()
df = pd.DataFrame({'labels': temp.index,
                   'values': temp.values
                  })
df.iplot(kind='pie',labels='labels',values='values', title='Type of House', hole = 0.5)
#最缺钱的是做实体的(这个国内情况很相似,踏实做事的企业赚不到钱;反倒不如投机倒把,炒房,炒股票的赚钱,堪忧啊)

#将类别属性数值化

from sklearn import preprocessing


#找出类别的属性
categorical_features = [
    categorical for categorical in df_train.columns if df_train[categorical].dtype == 'object'
]

#将类别属性数值化
for i in categorical_features:
    lben = preprocessing.LabelEncoder()
    lben.fit(list(df_train[i].values.astype('str')) + list(df_test[i].values.astype('str')))
    df_train[i] = lben.transform(list(df_train[i].values.astype('str')))
    df_test[i] = lben.transform(list(df_test[i].values.astype('str')))
#用-999填充空值
df_train.fillna(-999, inplace = True)
df_test.fillna(-999, inplace = True)
#构建模型


#LightGBM是个快速的,分布式的,高性能的基于决策树算法的梯度提升框架。可用于排序,分类,回归以及很多其他的机器学习任务中。

#如果没有lightgbm包,则需要安装(用了镜像源) pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/  lightgbm
import lightgbm as lgb
from sklearn.model_selection import train_test_split 
#提取标签列
Y = df_train['TARGET']
test_id = df_test['SK_ID_CURR']

#删除不用与训练的属性
train_X = df_train.drop(['TARGET','SK_ID_CURR'],axis=1)
test_X = df_test.drop(['SK_ID_CURR'], axis = 1)
#训练集分割为训练数据和验证数据
x_train, x_val, y_train, y_val = train_test_split(
    train_X, 
    Y, 
    random_state=18)
lgb_train = lgb.Dataset(data=x_train, label=y_train)
lgb_eval = lgb.Dataset(data=x_val, label=y_val)
#模型参数

params = {
    'task': 'train', 
    'boosting_type': 'gbdt', 
    'objective': 'binary', 
    'metric': 'auc', 
    'learning_rate': 0.05, 
    'num_leaves': 32, 
    'num_iteration': 500, 
    'verbose': 0 
}
#开始训练
model = lgb.train(params,lgb_train,valid_sets=lgb_eval,early_stopping_rounds=100,verbose_eval=10)
  
 

#特征的重要性分布如下

lgb.plot_importance(model,figsize=(18,20))
 
 

#预测
pred = model.predict(test_X)
sub = pd.DataFrame()
sub['SK_ID_CURR'] = test_id
sub['TARGET'] = pred
#保存结果
sub.to_csv("baseline_submission.csv", index=False)

sub.head(10)

#换一个训练模型
#LGBMClassifier
from lightgbm import LGBMClassifier


clf = LGBMClassifier(
    n_estimators=300,
    num_leaves=15,
    colsample_bytree=.8,
    subsample=.8,
    max_depth=7,
    reg_alpha=.1,
    reg_lambda=.1,
    min_split_gain=0.01)
#开始训练
clf.fit(x_train,
       y_train,
       eval_set=[(x_train,y_train),(x_val,y_val)],
       eval_metric='auc',
       verbose=0,
       early_stopping_rounds=30)

#预测
pred_1 = clf.predict(test_X)
sub = pd.DataFrame()
sub['SK_ID_CURR'] = test_id
sub['TARGET'] = pred_1
sub.to_csv("submission_clf.csv", index=False)
sub.head(10)

以上便是通过客户提供的信息预测客户有可能违约的模型实现过程,这里我将有数据都纳如到训练中,当然也可以根据你你自己的判断和思考去掉某些属性;也可以对其中的一些数值型属性进行分段划分。另外也可以用其他你认为更好的算法来训练模型,欢迎流言交流。

  • 11
    点赞
  • 95
    收藏
    觉得还不错? 一键收藏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值