求小于n的所有质数, 通常根据质数的定义,判定一个数i是否是质数,我们常用的方法是,用2~sqrt(i)之间的数除i,看是否能整除,如果能被有能被i整除的,则说明i不是质数.但这种方法效率不高.
先来简单介绍一下“筛法”,例如求2~20的质数,它的做法是先把2~20这些数一字排开:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
先取出数组中最小的质数2,判断2是质数,把后面2的倍数全部删掉。
2 | 3 5 7 9 11 13 15 17 19
接下来的是下一个最小的质数是3,取出,再删掉3的倍数
2 3 | 5 7 11 13 17 19
所以我们的方法就是用小于等于sqrt(n)的质数去筛选2~n的数就可以了.
void create_prime(bool notprime[], int n)
{ //if notprime[i] == false,so i will be a prime
for(int i=2;i*i<N;i++)
if(notprime[i] == false)
for(int j=i+i;j<=N;j+=i)
notprime[j] = true;
notprime[0] = notprime[1] = true;
}