中文分词评测

中文分词评测

4种基于Python第三方库的的中文分词方案的速度和精度。
- jieba https://github.com/fxsjy/jieba
- THULAC-Python https://github.com/thunlp/THULAC-Python
- pynlpir https://github.com/tsroten/pynlpir
- pyltp https://github.com/HIT-SCIR/pyltp

测试环境:2.9 GHz Intel Core i5

评测数据

采用SIGHAN(国际计算语言学会(ACL)中文语言处理小组)举办的国际中文语言处理竞赛Second International Chinese Word Segmentation Bakeoff所提供的公开数据进行评测,该数据及包含了多个测试集以及对应的黄金标准分词结果。

jieba

精确模式:试图将句子最精确地切开,适合文本分析;
全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
注:测评采用默认的精确模式
待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8

代码示例

# encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print(", ".join(seg_list))

Building prefix dict from the default dictionary ...
Loading model from cache /var/folders/s2/v6w20k414qn4g_y4d_8972ww0000gn/T/jieba.cache
Loading model cost 0.926 seconds.
Prefix dict has been built succesfully.
Default Mode: 我/ 来到/ 北京/ 清华大学
他, 来到, 了, 网易, 杭研, 大厦

自定义词典

  • 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。行添加新词可以保证更高的正确率
  • 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
  • 词典格式:一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。

THULAC-Python

THULAC(THU Lexical Analyzer for Chinese)由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包,具有中文分词和词性标注功能。
该工具目前仅处理UTF8编码中文文本

代码示例

import thulac   

thu1 = thulac.thulac(seg_only=True)  #默认模式,只进行分词,不进行词性标注
text = thu1.cut("我爱北京天安门", text=True)  #进行一句话分词
print(text)

Model loaded succeed
我 爱 北京 天安门

用户词典

初始化程序,进行自定义设置
thulac(user_dict=None, model_path=None, T2S=False, seg_only=False, filt=False)
user_dict 设置用户词典,用户词典中的词会被打上uw标签。词典中每一个词一行,UTF8编码

THULAC模型

  • 随THULAC源代码附带了简单的分词模型Model_1,仅支持分词功能。该模型由人民日报分词语料库训练得到。

  • 随THULAC源代码附带了分词和词性标注联合模型Model_2,支持同时分词和词性标注功能。该模型由人民日报分词和词性标注语料库训练得到。

  • 还提供更复杂、完善和精确的分词和词性标注联合模型Model_3和分词词表。该模型是由多语料联合训练训练得到(语料包括来自多文体的标注文本和人民日报标注文本等)。由于模型较大,如有机构或个人需要,请填写“资源申请表.doc”,并发送至 thunlp@gmail.com ,通过审核后我们会将相关资源发送给联系人。

pynlpir

pynlpir是对中科院计算所开发的CTCLAS 2015的Python封装。

安装
- pip install pynlpir 安装 PyNLPIR
- pynlpir update 下载最新的 license;或到gitbub的license地址下载NLPIR.user,覆盖安装路径下的原文件

支持UTF-8、GBK和BIG5编码的字符串

代码示例

import pynlpir
pynlpir.open()

s = '欢迎科研人员、技术工程师、企事业单位与个人参与NLPIR平台的建设工作。'
pynlpir.segment(s, pos_tagging=False)  #只进行分词

['欢迎', '科研', '人员','、', '技术', '工程师', '、', '企事业', '单位', '与', '个人', '参与', 'NLPIR', '平台', '的', '建设', '工作', '。']

用户词典

pynlpir.nlpir.ImportUserDict(filename)
Imports a user-defined dictionary from a text file.
- Parameters: filename (str) – The filename of the user’s dictionary file.
- Returns: The number of lexical entries successfully imported.
- Return type: int

pyltp

语言技术平台(Language Technology Platform,LTP)是 哈工大社会计算与信息检索研究中心发的一整套中文语言处理系统。
安装
- pip install pyltp
- 下载模型文件
注:确保下载的模型版本与当前版本的 pyltp 对应

pyltp 的所有输入的分析文本和输出的结果的编码均为 UTF-8。如果以非 UTF-8 编码的文本输入进行分析,结果可能为空。请注意源代码文件的默认编码。

代码示例

# -*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data'  # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径,模型名称为`cws.model`

from pyltp import Segmentor
segmentor = Segmentor()  # 初始化实例
segmentor.load(cws_model_path)  # 加载模型
words = segmentor.segment('元芳你怎么看')  # 分词
print '\t'.join(words)
segmentor.release()  # 释放模型

元芳 你 怎么 看

使用分词外部词典

pyltp 分词支持用户使用自定义词典。分词外部词典本身是一个文本文件(plain text),每行指定一个词,编码同样须为 UTF-8

# -*- coding: utf-8 -*-
import os
LTP_DATA_DIR = '/path/to/your/ltp_data'  # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径,模型名称为`cws.model`

from pyltp import Segmentor
segmentor = Segmentor()  # 初始化实例
segmentor.load_with_lexicon(cws_model_path, '/path/to/your/lexicon') # 加载模型,第二个参数是您的外部词典文件路径
words = segmentor.segment('亚硝酸盐是一种化学物质')
print '\t'.join(words)
segmentor.release()

使用个性化分词模型

pyltp 支持使用用户训练好的个性化模型。 个性化分词会在原有数据基础之上进行增量训练。 从而达到即利用原有数据数据,又兼顾目标领域特殊性的目的。
关于个性化模型的训练需使用 LTP,详细介绍和训练方法参考个性化分词

测评结果

  • 评测提供的资源icwb2-data中包含了来自四家单位(Academia Sinica、 City University 、Peking University 、Microsoft Research)的训练集(training)、测试集(testing), 以及根据各自分词标准而提供的相应测试集的标准答案(icwb2-data/gold)。
  • 在icwb2-data/scripts目录下含有对分词进行自动评分的perl脚本score(具体可参考icwb2-data/README)。
  • 分词结果需采用和测试集标准答案相同的格式
    词之间采用两个空格分割
    每行采用\r\n作为换行符
  • 测试数据为pku_test.utf8。该数据共1945行,281254个字符,509588字节
  • 评测标准
    N :黄金标准分割的单词数
    e :分词器错误标注的单词数
    c :分词器正确标注的单词数

    R=cN
    P=cc+e
    F=2×P×RP+R
Alglrithm Time Precision Recall F-mesure
jieba 0.003026s 0.787 0.853 0.818
THULAC-Python 6.683058s 0.923 0.921 0.922
pynlpir 0.722132s 0.943 0.940 0.942
pyltp 1.952179s 0.946 0.960 0.953

没有更多推荐了,返回首页