MxNet
Richard_Che
这个作者很懒,什么都没留下…
展开
-
MxNet 学习笔记(1):MxNet中的NDArray
NDArray在MxNet中,NDArray是所有数学运算的核心数据结构,与Numpy中的ndarray相似。与numpy相比,MxNet中的NDArray有以下的优点:对平台通用:在CPU GPU下都兼容可以自动地并行化NDArray的创建在Mxnet中,NDArray实质上指的是mx.nd.array,并且有以下几种常用的属性:ndarray.shape: The dimensions原创 2017-06-24 23:21:42 · 10631 阅读 · 0 评论 -
MxNet学习笔记(2):GPU支持以及其他
GPU的使用在MxNet中,可以通过gpu_device=mx.gpu()来创建GPU的context创建矩阵的时候,可以通过a = mx.nd.ones((100,100))来创建需要执行一个函数的时候,可以通过以下方式在GPU上执行:gpu_device=mx.gpu() # Change this to mx.cpu() in absence of GPUs.def原创 2017-06-25 09:53:02 · 5488 阅读 · 4 评论 -
MxNet学习笔记(3):关于Symbol
Symbol与caffe类似,MxNet中定义了符号运算。我对符号运算的理解是:区别于之前介绍的NDArray,通过符号,我们可以定义出一系列的表达式,或者网络。这样定义出来的表达式或网络有点类似于数学中的函数式,比如f(x)=ax+bf(x) = ax + b,这时候,aa,xx,bb,都仅仅是一些符号,本身的值是未确定的。当这些符号被赋予具体的数值时,才能计算出函数式本身的值f(x)f(x)。而原创 2017-06-25 17:40:02 · 3405 阅读 · 0 评论