论文笔记:Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation

论文链接:https://arxiv.org/pdf/1911.10194.pdf

核心思想:

  1. 一种高效的bottom-up全景分割方法,比two-stage更快
  2. 一个统一的backbone,分出两个结构非常相似的头部,实现两种任务:一个是one-stage的实例分割,一个是语义分割,最终通过后处理将二者集成起来
  3. one-stage实例分割实际上是class-agnostic(类别无关)的offset回归 + 实例中心heatmap
  4. 这个框架可以用任意的语义分割的代替,具有很强的灵活性

Intro

  • 全景分割的目的:对每个像素点给予不同的label + instance ID(如果对于stuff,比如地面,背景,不需要instance ID)
  • 总体来说目前有2种流行思路:Top-down & Bottom-up:
    • Top-down方式基本上可以认为在Mask-RCNN的基础上接一个语义分割的头部,但是这种方式会造成语义分割和实例分割之间的冲突(因为一个像素点可能被实例分割成一类,但语义分割又变成了另一类),为了解决这个问题,就需要通过某种设定的方式来融合语义分割的score + 实例分割的score
    • 由于top-down的方式会有一个很长的pipeline(RPN + RCNN/Mask),外加一个semantic,因此通常会比较慢
    • bottom-up:先生成语义分割的信息,然后根据语义分割以及其他信息将语义分割的同类、同实例的像素点归并到一起
    • bottom-up系列和top-down相比更快,性能更低

Panoptic-DeepLab整体结构

整体结构如Fig.1 所示。包含4方面:

  1. Backbone:基于ImageNet Pretrain,在最后一层加上空洞卷积
  2. ASPP模块: 用于提取multi-scale的context
  3. Decoder: 基于DeepLab V3修改了2部分,包括引入了1/8尺度的skip-connection,以及每次上采样之后加上了5x5的卷积。至此,语义分割和实例分割的分支结构都完全相同。这么做的一大优势在于各任务的梯度能够更均衡,这样的多任务网络能够更好地收敛
  4. 语义分割的头部是一个很常见的FCN
  5. 实例分割:
    1. 通过实例的质心 + 实例对应的每个像素点对于质心的偏移量来表征一个实例
    2. 对于质心的回归用L2,偏移量的回归用L1
      在这里插入图片描述

全景分割(语义分割+实例分割后处理)

本文的后处理主要包括2部分,如Fig. 2所示:一个是将实例的质心和偏移量组合起来,形成若干实例(原图每个目标(thing)都会带有实例id);另一个是将语义分割的结果和实例分割结果高效地归并在一起

  1. 实例的质心后处理:对最终输出的Feature Map进行NMS(实际上是Max Pooling,保留Pool前后未改变的坐标,作为实例的中心):

    1. k = 7
    2. thres = 0.1
    3. top-k = 200
  2. 根绝offset的组合:根据offset map,需要找到每个offset对应的中心点。给定坐标点 ( i , j ) (i,j) (i,j),它的Offset是 O ( i , j ) O(i,j) O(i,

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。
PyTorch DeepLab是一个基于PyTorch实现的图像分割算法。该算法在深度学习领域取得了很好的表现,特别是在语义分割任务上。它使用了不同的backbone网络结构(例如ResNet、Xception、MobileNet)来提取图像特征,并使用自下而上的方法对图像中的每个像素进行语义标签和实例标签的分配。 Panoptic-DeepLab是其中一种最先进的自下而上的全景分割方法,它可以为输入图像中的每个像素分配语义标签和实例标签。此方法的目标是将每个像素分配给属于物体类别的语义标签(如人、狗、猫等),同时为每个实例分配唯一的ID标签。 PyTorch DeepLab实现了语义分割的功能,可以将输入图像分割成不同的语义区域。通过使用不同的backbone网络结构,PyTorch DeepLab能够在不同的应用场景中灵活地进行图像分割,以适应各种需求。 要使用PyTorch DeepLab进行图像分割,您可以先选择适合您任务的backbone网络结构(如ResNet、Xception、MobileNet等),然后使用相应的PyTorch库来加载和训练模型。通过将输入图像传递给已经训练好的模型,您可以获得关于每个像素的语义标签和实例标签的预测结果。 总结来说,PyTorch DeepLab是一个用于图像分割的PyTorch库,它实现了语义分割的功能,并支持使用不同的backbone网络结构进行图像分割任务。您可以根据具体的应用需求选择适合的backbone网络结构,并使用相应的PyTorch库来加载和训练模型,从而实现图像分割的目标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值