一整数数列a1, a2, ... , an(有正有负),以及另一个整数k,求一个区间[i, j],(1 <= i <= j <= n),使得a[i] + ... + a[j] = k。
Input
第1行:2个数N,K。N为数列的长度。K为需要求的和。(2 <= N <= 10000,-10^9 <= K <= 10^9) 第2 - N + 1行:A[i](-10^9 <= A[i] <= 10^9)。
Output
如果没有这样的序列输出No Solution。 输出2个数i, j,分别是区间的起始和结束位置。如果存在多个,输出i最小的。如果i相等,输出j最小的。
Input示例
6 10 1 2 3 4 5 6
Output示例
1 4
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 10010
long long int a[N],b[N];
int main()
{
int i,j,n,m,k;
scanf("%d %d",&n,&m);
memset(b,0,sizeof(b));
b[0]=0;
for(i=1;i<=n;i++){
scanf("%lld",&a[i]);
b[i]=b[i-1]+a[i];
}
//for(i=1;i<=n;i++) cout<<b[i]<<endl;
int flag=0;
int x=100100,y=100100;
for(i=1;i<=n;i++){
for(j=0;j<i;j++){
if(b[i]-b[j]==m){if(j<x){x=j;y=i;}flag=1;break;}
}
}
if(!flag) printf("No Solution\n");
else printf("%d %d",x+1,y);
return 0;
}