51nod 1035最长循环节

题目链接:传送门
首先一个数如果能被2或者5整除,整除到最后结果等于1,那么这个数被1除一定不是循环小数。
像3 6 7这些数的倍数被1除都是无限循环小数。
这个题就相当于求 10^a%n=1把最小的a求出来。
所以我一开始就用Pow函数写了一个,结果发现像1/49这种有理数,无限循环小数,连电脑的计算器都找不出他的循环节,他的循环节太后了,开Pow是找不出来的。
所以就模拟除法,每次除出来的余数如果不是1就乘以10继续除,除到余数为1即出现了循环为止
代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N  1010
int main(){
    int i,j,n,m,k;
    while(scanf("%d",&n)!=EOF){
            int res=0,ans=0;
        for(i=2;i<=n;i++){
            int x=i;
            while(x%2==0) x/=2;
            while(x%5==0) x/=5;
            if(x==1){
                continue;
            }
            int j=0,p=1;
           do{
                p=p*10%x;
            j++;
           }while(p!=1);
            if(j>=res){
                res=j;
                ans=i;
            }
        }
    cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值