import pandas as pd # 将pandas作为第三方库导入,我们一般为pandas取一个别名叫做pd
pd.set_option('expand_frame_repr', False) # 当列太多时清楚展示
# =====导入数据
df = pd.read_csv(
r'C:\Users\simons\Desktop\xbx_stock_2019\data\a_stock_201903.csv',
encoding='gbk',
skiprows=1
)
# =====排序函数
# print(df.sort_values(by=['交易日期'], ascending=1)) # by参数指定按照什么进行排序,acsending参数指定是顺序还是逆序,1顺序,0逆序
# print(df.sort_values(by=['股票代码', '交易日期'], ascending=[1, 0])) # 按照多列进行排序
# =====两个df上下合并操作,append操作
# df1 = df.iloc[0:10][['交易日期', '股票代码', '收盘价', '成交量']]
# print(df1)
# df2 = df.iloc[5:15][['交易日期', '股票代码', '收盘价', '成交量']]
# print(df2)
# print(df1.append(df2)) # append操作,将df1和df2上下拼接起来。注意观察拼接之后的index。index可以重复
# df3 = df1.append(df2, ignore_
【python】pandas使用-数据整理
最新推荐文章于 2022-10-18 14:44:54 发布
本文详细介绍了Python的Pandas库在数据整理方面的应用,包括数据清洗、数据转换、缺失值处理、数据分组和聚合等核心操作,帮助读者掌握高效的数据分析技巧。
摘要由CSDN通过智能技术生成