题目链接:https://leetcode.com/problems/wiggle-sort-ii/
我的解题思路:先用快排从小到大排序,然后分别将前半段数据和后半段数据依次插入,若有中间数据,则放在最后即是题目要求的格式。
public class Solution {
public static void wiggleSort(int[] nums) {
if(nums.length == 1) return;
int[] array = new int[nums.length];
for(int i=0;i<nums.length;i++) {
array[i] = nums[i];
}
quickSort(array, 0, nums.length-1);
int l = 0;
int r = nums.length/2;
int m = r;
int index = 0;
while(l<m) {
nums[index] = array[l];
index ++;
l++;
nums[index] = array[r];
index++;
r++;
}
if(nums.length % 2 != 0) {
nums[nums.length-1] = array[nums.length/2 + 1];
}
}
private static void quickSort(int[] nums, int left, int right) {
int temp = nums[left];
int mLeft = left;
int mRight = right;
while(mLeft<mRight) {
while(mLeft<mRight && temp<=nums[mRight])
mRight--;
if(mLeft<mRight) {
swap(nums, mLeft, mRight);
// nums[mLeft] = nums[mRight];
// mLeft ++;
}
while(mLeft<mRight && temp>=nums[mLeft])
mLeft++;
if(mLeft<mRight) {
swap(nums, mLeft, mRight);
// nums[mRight] = nums[mLeft];
// mRight--;
}
}
if(mLeft != left) quickSort(nums,left,mLeft-1);
if(mRight != right) quickSort(nums,mRight+1,right);
}
public static void swap(int[] nums, int a, int b) {
int temp = nums[a];
nums[a] = nums[b];
nums[b] = temp;
}
}
题意大致为将给定数组中的元素按形如nums[0] < nums[1] > nums[2] < nums[3]….这种样子排列,顺序没要求。
这道题O(1)时间复杂度和空间复杂度的最优解暂时没想出来,用蠢办法解决。方案为先复制当前数组,将复制的数组排序,然后以中位数为界将数组分为两部分,small part和large part。交替填入原始数组即可,这样做的原因是可以避免有值相同的数组挨在一起,以符合题目规则。
交替填入也得注意必须降序交替,否则任然有可能挨在一起。比如[4, 5, 5, 6]这一组如果升序交替填入任然是4、5、5、6,降序则为5、6、4、5
public void wiggleSort(int[] nums) {
int[] temp = Arrays.copyOfRange(nums, 0, nums.length);
Arrays.sort(temp);
int large = temp.length / 2 + (temp.length % 2 == 0 ? -1 : 0);
int small = temp.length - 1;
for (int i = 0, j = 1; i < temp.length; i+=2, j+=2) {
if(j < temp.length) nums[j] = temp[small--];
nums[i] = temp[large--];
}
}
这样实现确实可以,思想和我的一样。
思考答案第一条的思想:https://leetcode.com/problems/wiggle-sort-ii/?tab=Solutions
最主要的是找到中间一个
void wiggleSort(vector<int>& nums) {
int n = nums.size();
// Find a median.
auto midptr = nums.begin() + n / 2;
nth_element(nums.begin(), midptr, nums.end());
int mid = *midptr;
// Index-rewiring.
#define A(i) nums[(1+2*(i)) % (n|1)]
// 3-way-partition-to-wiggly in O(n) time with O(1) space.
int i = 0, j = 0, k = n - 1;
while (j <= k) {
if (A(j) > mid)
swap(A(i++), A(j++));
else if (A(j) < mid)
swap(A(j), A(k--));
else
j++;
}
}