1、数据可视化与编程实践指南

数据可视化与编程实践指南

1. 作者简介

Ben Fry 毕业于麻省理工学院媒体实验室的美学与计算小组,获得博士学位。他曾在 2006 - 2007 年担任卡内基梅隆大学设计学院的 Nierenberg 设计主席。他与 Casey Reas 共同开发了 Processing 编程环境,该环境于 2005 年获得了电子艺术大奖的金尼卡奖。Ben 的作品获得了洛克菲勒基金会的新媒体奖学金,并且在现代艺术博物馆、电子艺术节、2002 年惠特尼双年展和 2003 年库珀休伊特设计三年展上展出。

2. 封面动物——北方鹰鸮
  • 分布范围 :北方鹰鸮主要分布在北美和欧亚大陆的北方针叶林地区。在地理上分布广泛,从欧亚大陆到挪威、瑞典、芬兰,向东经西伯利亚到堪察加半岛,在中国华北和中亚地区南至天山山脉。在北美,从阿拉斯加到加拿大的拉布拉多都有它们的踪迹。当食物充足时,它们会在当地繁殖;食物匮乏时,幼鸟可能会向南飞到正常分布范围之外。
  • 身体特征 :属于中型猫头鹰,体长通常在 36 - 41 厘米之间,翼展在 22 - 25 厘米宽。雄性体重一般在 273 - 326 克,雌性稍重,在 306 - 392 克。它们外观相似,最容易通过叫声区分,雄性叫声是快速、悦耳、咕噜咕噜的颤音,雌性叫声类似但音调更高且不够清晰。头部圆润,面部呈白色,两侧有黑色粗条纹。上半身通常是深灰色和黑色,额头和头顶密布斑点。尾巴长且有白色条纹,嘴呈黄色,眼睛为淡黄色(幼鸟眼睛为金黄色,随着年龄增长变淡)。
  • 生活习性 :与大多数猫头鹰不同,北方鹰鸮通常在
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值