如何让Midjourney, Stable Diffusion XL, Dall.E根据用户中文要求生成图片

        随着AIGC应用的逐步深入,大家也开始逐渐将文生图大模型集成到自家的产品中,以求让自己的产品在竞争中更加突出。其中效果最好的图文模型依然是Midjourney, Stable Diffusion XL和Dall.E-3这三个老牌的模型。

        不过这三个模型在对于中文的解析还是差强人意,调用上也各有特点和限制。其中Dall.E只能说对于中文的理解略好,但是实际按照用户中文要求直接生成的效果依然不太理想。

        我们先来看一下这三个模型对于中文的直接解析效果。

        提示词(用户要求):“生成科技产品上新用户很高兴的配图, 绿色系,科技感”。

        Midjourney对于用户中文要求的直接效果,不说是“南辕北辙”,也可以说是“毫不相干”。

Midjourney直接按照用户中文要求生成

        而Stable Diffusion XL则会直接报错“Invalid prompts detected”。

        Dall.E 3的效果只能说是“好像理解,但是又好像没有完全理解”。

Dall.E 3 直接按照用户中文要求生成图片

        如果将这个生成的效果直接提交给产品或者甲方爸爸,那么等待我们的估计将会长达数十分钟的吐槽。

        网上有各种长达数页的教程交给用户如何适应图文模型,写出能达到满意效果的提示词。这个要求律己尚可,如果以此要求用户和甲方爸爸确实有点不太现实。相信他们会默默的关闭应用,并给出只有1星的评价和吐槽。

        那么我们应该如何将图文模型,方便快捷的集成到自家的产品中,又能做到满足客户的要求呢?

        日月摘星针对大家的这种场景,特别做了提示词优化,更可以让用户以API的方式来调用三大图文模型,让您可以10分钟轻松完美的完成图文模型的集成,更能让图文模型听懂用户中文描述的”人话“。

        您所要做的只需要在调用日月摘星的图像生成接口时传入优化提示词的参数即可(默认也会为您开启优化)。

        具体的例子如下:

https://api.riyuexinzhu.com/images/models/midjourney/generate

        传入参数时指定options.to_tune_prompt参数为1即可(不传入也是默认开启哦)。

{
    "text": "生成科技产品上新用户很高兴的配图, 绿色系,科技感",
	"options": {
		"return_mode": "url",
        "to_tune_prompt": 1
	}
}

在返回的参数中,您可以在tuned_text看到日月摘星为您优化之后的提示词。我们也可以看到日月摘星并不是简单的翻译成英文,也会针对图文模型的生成作出提示词的优化调整,包括风格和图片的要求。

{
    "resp_code": 200,
    "resp_message": "SUCCESS",
    "data": {
        "images": [
            "https://ai-agency-pro.oss-cn-beijing.aliyuncs.com/users/xxxx/images/midjourney/1701085711e320b9828d1a11ee9e5f02420a0005cb.png?xxxxxx&Signature=lAFQnDSytEmnPU2p6SaM0upnKRU%3D"
        ],
        "midjourney_task_id": "1701085666853491"
    },
    "pricing": {
        "account_balance": "24.5194",
        "price": "0.2862"
    },
    "tuned_text": "A futuristic, sleek, and minimalist greentoned illustration of a delighted new user interacting with a cuttingedge tech product. Hightech, vibrant color scheme, modern, clean lines, sharp focus."
}

        我们来看一下日月摘星优化过之后的三大模型生成图片的效果。

日月摘星优化提示词之后,Midjourney生成图片效果

日月摘星优化提示词之后,Stable XL生成图片效果

日月摘星优化提示词之后,Dall.E 3生成图片效果

        对比直接将用户的中文要求传给图文模型,图片生成的效果还是可以得到明显提升。

        更多接口调用的具体内容您可以参照日月摘星接口描述

        现在注册日月摘星,10分钟帮助您的产品接入AI大模型,马上进入AI新时代。

        上车入口: 日月摘星官网。现在注册认证更送6.66元体验金。

        此时不入,更待何时!

        日月摘星,为您摘得AI时代最闪亮的星!

<think>好的,我现在需要帮助用户了解或获取有关扩散模型的软件工具和库。首先,我需要明确扩散模型的基本概念,确保自己理解正确。扩散模型是一种生成模型,通过逐步添加和去除噪声来生成数据,这在图像生成、音频合成等领域应用广泛。 接下来,用户可能需要的不仅仅是软件列表,还包括这些工具的特点和使用方法。根据用户提供的引用,特别是引用[1]提到的Agenta,这是一个处理大型语言模型的平台,虽然主要针对LLMs,但可能也支持扩散模型的相关应用,需要确认这一点。另外,引用[3]提到使用LaTeX和BibTeX,这可能与学术写作相关,但用户的问题更偏向于软件工具,暂时可能不需要这部分信息。 用户的需求可能包括开源库、商业软件、框架集成以及预训练模型。我需要分门别类整理这些信息,并提供每个工具的简要说明、适用场景和链接。例如,Hugging Face的Diffusers库是一个重要资源,应该详细说明。Stability AI的Stable Diffusion也是热门工具,需要提到其不同版本和适用平台。 同时,用户可能关心如何选择工具,比如根据编程语言偏好(Python)、是否有GPU支持、是否需要商业许可等。因此,在回答中可以加入选择建议,帮助用户根据自身情况做出决策。 生成的相关问题需要围绕扩散模型的应用、学习资源、性能优化和最新进展,这样用户如果有进一步的问题,可以自行探索。需要确保问题与用户的主要查询相关,并且能够引导他们深入了解更多内容。 最后,检查所有工具的信息是否准确,链接是否有效,并确保使用正确的LaTeX格式,如变量和公式的表示。例如,扩散过程可以用数学公式描述,如$dx_t = f(x_t, t)dt + g(t)dw_t$,这样能增强回答的专业性。 总结步骤: 1. 介绍扩散模型及其应用。 2. 分点列出开源库、商业软件等工具,每个工具简要说明。 3. 提供选择工具的建议。 4. 生成相关问题,帮助用户进一步探索。 5. 正确引用提供的资料,特别是Agenta的相关信息。 6. 确保使用正确的格式,如LaTeX和引用标识。</think>以下是与扩散模型(Diffusion Models)相关的软件工具和库的详细介绍: --- ### 扩散模型软件工具及库 扩散模型通过逐步添加和去除噪声生成数据,广泛应用于图像、音频和分子设计等领域。以下是常用工具分类: #### 1. **开源库与框架** - **Diffusers(Hugging Face)** - 功能:提供预训练扩散模型(如Stable DiffusionDALL·E 2)的快速实现和微调工具。 - 适用场景:图像生成、文本到图像转换、可控生成。 - 链接:[Hugging Face Diffusers](https://github.com/huggingface/diffusers) - 示例代码: ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") image = pipeline("a photo of an astronaut riding a horse").images[0] ``` - **PyTorch Lightning Bolts** - 功能:包含扩散模型的简化实现,支持快速实验。 - 适用场景:研究原型开发、教育用途。 - 链接:[PyTorch Lightning Bolts](https://github.com/Lightning-AI/lightning-bolts) #### 2. **商业与专用工具** - **Stability AI (Stable Diffusion)** - 功能:提供高性能图像生成工具,支持Web界面和API调用。 - 版本:Stable Diffusion 2.0(开源)、Stable Diffusion XL(商业版)。 - 链接:[Stability AI](https://stability.ai/) - **RunwayML** - 功能:无需代码的扩散模型应用,支持图像、视频编辑和风格迁移。 - 适用场景:艺术创作、设计原型。 - 链接:[RunwayML](https://runwayml.com/) #### 3. **研究框架** - **Guided Diffusion (OpenAI)** - 功能:支持带条件引导的扩散模型,适用于高分辨率图像生成。 - 论文复现:基于$dx_t = f(x_t, t)dt + g(t)dw_t$的数值求解方法。 - 链接:[Guided Diffusion GitHub](https://github.com/openai/guided-diffusion) #### 4. **预训练模型平台** - **ModelScope (阿里巴巴)** - 功能:提供中文优化的扩散模型,支持文本到图像生成。 - 适用场景:中文内容创作。 - 链接:[ModelScope](https://modelscope.cn/) #### 5. **集成开发环境** - **Agenta** - 功能:支持大型模型(包括扩散模型)的部署和实验管理,提供A/B测试和版本控制[^1]。 - 适用场景:企业级模型迭代。 - 链接:[Agenta GitHub](https://github.com/Agenta-AI/agenta) --- ### **工具选择建议** - **研究/开发**:优先使用`Diffusers`或`PyTorch Lightning`,灵活性高。 - **快速应用**:选择`RunwayML`或`Stable Diffusion WebUI`,无需编码。 - **企业部署**:结合`Agenta`进行模型管理和优化。 --- ### 数学背景示例 扩散过程可通过随机微分方程描述: $$ dx_t = -\frac{1}{2}\beta(t)x_t dt + \sqrt{\beta(t)}dw_t $$ 其中$\beta(t)$控制噪声调度,$w_t$为标准布朗运动。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

日月新著

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值