大学物理华南农业大学专版(上)

力学


1. 矢量运动学基础

位置矢量 r ⃗ = x i ⃗ + y j ⃗ + z k ⃗ \vec{r}=x\vec{i}+y\vec{j}+z\vec{k} r =xi +yj +zk

某一点 P(x,y,z),单位向量 i ⃗ , j ⃗ , k ⃗ \vec{i},\vec{j},\vec{k} i ,j ,k

位置矢量的长度: ∣ r ∣ = x 2 + y 2 + z 2 |r|=\sqrt{x^2+y^2+z^2} r=x2+y2+z2

方向描述: c o s α = x ∣ r ∣ cos\alpha = \frac{x}{|r|} cosα=rx c o s β = y ∣ r ∣ cos\beta=\frac{y}{|r|} cosβ=ry c o s γ = z ∣ r ∣ cos\gamma=\frac{z}{|r|} cosγ=rz

运动方程:位置和时间的变化关系, r ⃗ = x ( t ) i ⃗ + y ( t ) j ⃗ + z ( t ) k ⃗ \vec{r}=x(t)\vec{i}+y(t)\vec{j}+z(t)\vec{k} r =x(t)i +y(t)j +z(t)k

轨迹方程:假如我们用时间的分量式去消掉t的话,只剩下 f ( x , y , z ) = 0 f(x,y,z)=0 f(x,y,z)=0,那么这个方程叫做轨迹方程,直线运动的话运动轨迹是直线,曲线运动的运动轨迹是曲线。

位移 Δ r ⃗ = r B ⃗ − r A ⃗ = ( x B − x A ) i ⃗ + ( y B − y A ) j ⃗ + ( z B − z A ) k ⃗ \Delta \vec{r}=\vec{r_B}-\vec{r_A} = (x_B-x_A)\vec{i}+(y_B-y_A)\vec{j}+(z_B-z_A)\vec{k} Δr =rB rA =(xBxA)i +(yByA)j +(zBzA)k

Δ s \Delta s Δs:运动轨迹标量,也是运动轨迹的实际长度
Δ r \Delta r Δr:矢量长度的差 = ∣ r B ⃗ ∣ − ∣ r A ⃗ ∣ |\vec{r_B}|-|\vec{r_A}| rB rA
Δ r ⃗ \Delta \vec{r} Δr :位移 = r B ⃗ − r A ⃗ \vec{r_B}-\vec{r_A} rB rA

把这个图记住就可以了:
位移,位置矢量差,轨迹变化长度的区别

平均速度/速率

  • 平均速度 v ⃗ ˉ = Δ r Δ t \bar{\vec{v}} =\frac{\Delta r}{\Delta t} v ˉ=ΔtΔr

  • 平均速率 v ˉ = Δ s Δ t \bar{v} = \frac{\Delta s}{\Delta t} vˉ=ΔtΔs

瞬时速度/速率

  • 瞬时速度 v ⃗ = d r ⃗ d t = l i m Δ t → 0 Δ r ⃗ Δ t \vec{v} = \frac{d\vec{r}}{dt} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{r}}{\Delta t} v =dtdr =limΔt0ΔtΔr
  • 瞬时速率 v = ∣ v ⃗ ∣ = d s d t = ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 v = |\vec{v}| = \frac{ds}{dt} = \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2+(\frac{dz}{dt})^2} v=v =dtds=(dtdx)2+(dtdy)2+(dtdz)2

平均加速度/瞬时加速度

  • 速度矢量差 Δ v ⃗ = v 2 ⃗ − v 1 ⃗ \Delta \vec{v} = \vec{v_2} - \vec{v_1} Δv =v2 v1
  • 平均加速度 a ⃗ ˉ = Δ v ⃗ Δ t \bar{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t} a ˉ=ΔtΔv
  • 瞬时加速度 a ⃗ = l i m Δ t → 0 Δ v ⃗ Δ t = d v ⃗ d t = d 2 r ⃗ d t 2 \vec{a} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} a =limΔt0ΔtΔv =dtdv =dt2d2r
  • 瞬时加速度大小 ∣ a ⃗ ∣ = ∣ d v ⃗ d t ∣ ≠ d ∣ v ⃗ ∣ d t |\vec{a}|=|\frac{d\vec{v}}{dt}| \neq \frac{d|\vec{v}|}{dt} a =dtdv =dtdv

常用运动公式(必背)

  • v = v 0 + a t v = v_0+at v=v0+at
  • x = x 0 + v 0 t + 1 2 a t 2 x = x_0+v_0t+\frac{1}{2}at^2 x=x0+v0t+21at2
  • v 2 − v 0 2 = 2 a ( x − x 0 ) v^2-v_0^2 = 2a(x-x_0) v2v02=2a(xx0)
  • a = d v d t a = \frac{dv}{dt} a=dtdv
  • v = d x d t v = \frac{dx}{dt} v=dtdx
  • v = v 0 + ∫ t 0 t a d t ⇐ ⇒ ∫ v 0 v d v = ∫ t 0 t a d t v = v_0+\int_{t_0}^tadt \Leftarrow\Rightarrow \int_{v_0}^vdv = \int_{t_0}^tadt v=v0+t0tadtv0vdv=t0tadt
  • x = x 0 + ∫ t 0 t v d t ⇐ ⇒ ∫ x 0 x d x = ∫ t 0 t v d t x = x_0+\int_{t_0}^tvdt \Leftarrow\Rightarrow \int_{x_0}^{x}dx = \int_{t_0}^{t}vdt x=x0+t0tvdtx0xdx=t0tvdt

例题1:飞机在起飞前以一定的加速度在跑道上做直线运动,已知其加速度𝑎=3𝑡^2+6𝑡+2;在𝑡=0的初始时刻,其位置在𝑥=0处,速度为零。试求起飞前任意时刻飞机运动的速度和位置。

:已知 t = 0 , x 0 = 0 , v 0 = 0 t=0,x_0=0,v_0=0 t=0,x0=0,v0=0

v = v 0 + ∫ t 0 t a d t v = v_0 + \int_{t0}^{t}adt v=v0+t0tadt

v = t 3 + 3 t 2 + 2 t v=t^3+3t^2+2t v=t3+3t2+2t

x = x 0 + ∫ t 0 t v d t x = x_0+\int_{t_0}^{t}vdt x=x0+t0tvdt

x = 1 4 t 4 + t 3 + t x=\frac{1}{4}t^4+t^3+t x=41t4+t3+t

2. 矢量运动学进阶(圆周)

切向/法向:切向沿着速度方向,垂直于速度方向为法轴

切向加速度/法向加速度

  • a ⃗ = l i m Δ t → 0 Δ v ⃗ Δ t \vec{a} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v}}{\Delta t} a =limΔt0ΔtΔv

  • a ⃗ = a n ⃗ + a i ⃗ \vec{a} = \vec{a_n} + \vec{a_i} a =an +ai

  • 法向加速度 a n ⃗ = l i m Δ t → 0 Δ v 1 ⃗ Δ t \vec{a_n} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v_1}}{\Delta t} an =limΔt0ΔtΔv1

  • 切向加速度 a i ⃗ = l i m Δ t → 0 Δ v 2 ⃗ Δ t \vec{a_i} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v_2}}{\Delta t} ai =limΔt0ΔtΔv2

在这里插入图片描述

圆周运动的法向加速度: a n = v 2 R a_n = \frac{v^2}{R} an=Rv2

实际上切向加速度和法向加速度可以定义一个运动的性质:

  • a n = 0 , a i = 0 a_n = 0,a_i = 0 an=0ai=0:匀速直线运动
  • a n = 0 , a i ≠ 0 a_n = 0,a_i \neq 0 an=0ai=0:变速直线运动
  • a n ≠ 0 , a i = 0 a_n\neq 0,a_i=0 an=0ai=0:匀速曲线运动
  • a n ≠ 0 , a i ≠ 0 a_n\neq 0,a_i\neq0 an=0ai=0:变速曲线运动

匀速圆周运动实际上是切向加速度变化的运动,因此是加速运动。

解决矢量运动学问题的关键

r ⃗ ( t ) ← → v ⃗ ( t ) ← → a ⃗ ( t ) \vec{r}(t)\leftarrow\rightarrow\vec{v}(t)\leftarrow\rightarrow\vec{a}(t) r (t)v (t)a (t)

之间通过求导和积分进行过渡。

例题1:设有一个质点作半径为𝑟的圆周运动。质点沿圆周运动所经历的路程与时间的关系为𝑠=𝑏𝑡^2/2,并设𝑏为一常量。

(1)此质点在某一时刻的速率;

(2)法向加速度和切向加速度的大小

(3)总加速度。

解:

(1)求瞬时速率: v = d s d t = b t v=\frac{ds}{dt} = bt v=dtds=bt

(2)和(3)求加速度: a ⃗ = a n ⃗ + a i ⃗ \vec{a} = \vec{a_n}+\vec{a_i} a =an +ai

a n = v 2 R = ( b t ) 2 R a_n = \frac{v^2}{R}=\frac{(bt)^2}{R} an=Rv2=R(bt)2

a i = d v d t = b a_i = \frac{dv}{dt} = b ai=dtdv=b

∣ a ⃗ ∣ = ( a i ) 2 + ( a n ) 2 = b ( b 2 t 4 r 2 + 1 ) |\vec{a}| = \sqrt{(a_i)^2+(a_n)^2}=b(\frac{b^2t^4}{r^2}+1) a =(ai)2+(an)2 =b(r2b2t4+1)

方向: t a n α = a n a i = b t 2 r tan\alpha = \frac{a_n}{a_i}=\frac{bt^2}{r} tanα=aian=rbt2


套路:先求出瞬时速度,再求出法向加速度(向心加速度)(圆周运动的切向加速度是定死的),然后用 d v d t \frac{dv}{dt} dtdv求出法向加速度,求出加速度的方向和大小


例题2:一艘正在沿直线行驶的汽艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度的二次方成正比,即 a = − k v 2 a=−kv^2 a=kv2,𝑘为常量。若发动机关闭瞬间汽艇的速度为 v 0 v_0 v0,试求该汽艇又行驶𝑥距离后的速度。

a = d v d t = d v d x d t d x = v d v d x = − k v 2 a=\frac{dv}{dt}=\frac{dvdx}{dtdx}=v\frac{dv}{dx}=-kv^2 a=dtdv=dtdxdvdx=vdxdv=kv2

v d v = − k v 2 d x vdv=-kv^2dx vdv=kv2dx

∫ v 0 v d v v = ∫ x 0 x − k d x \int_{v_0}^v\frac{dv}{v}=\int_{x_0}^{x}-kdx v0vvdv=x0xkdx

v = v 0 e − k x v=v_0 e^{−kx} v=v0ekx


3. 牛顿运动定律

牛顿第一定律:惯性定律

牛顿第二定律:力是改变物体状态的原因(仅适用于质点的运动)

F ⃗ = d P ⃗ d t = d ( m v ⃗ ) d t = m a ⃗ \vec{F} = \frac{d\vec{P}}{dt}=\frac{d(m\vec{v})}{dt}=m\vec{a} F =dtdP =dtd(mv )=ma

牛顿第三定律:作用力和反作用力

动力学综合问题的解决:

r ⃗ ( t ) ← → v ⃗ ( t ) ← → a ⃗ ( t ) ← → F ⃗ ( t ) \vec{r}(t)\leftarrow\rightarrow\vec{v}(t)\leftarrow\rightarrow\vec{a}(t)\leftarrow\rightarrow\vec{F}(t) r (t)v (t)a (t)F (t)

例题1:质量为𝑚的摩托车,在恒定的牵引力𝐹的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是 v m v_m vm。试计算摩托车从静止加速到 v m / 2 v_m/2 vm/2所需的时间以及所走过的路程


列出牛二:
F − k v = m a = m d v d t F- kv = ma = m \frac{dv}{dt} Fkv=ma=mdtdv

最重要的是我们需要知道的是当加速度a = 0的时候,速率最大。

因此有:
k = F v m 2 k = \frac{F}{v_m^{2}} k=vm2F

代入之后:

F ( 1 − v 2 v m 2 ) = m d v d t F(1-\frac{v^2}{v_m^{2}}) = m \frac{dv}{dt} F(1vm2v2)=mdtdv

∫ 0 t d t = m F ∫ 0 v m / 2 ( 1 − v 2 v m 2 ) d v \int_0^t dt = \frac{m}{F}\int_0^{v_m/2}(1-\frac{v^2}{v_m^2})dv 0tdt=Fm0vm/2(1vm2v2)dv

因此可以求出: t = m v m 2 F l n 3 t = \frac{mv_m}{2F}ln3 t=2Fmvmln3

如果求路程的话:
∫ 0 x d x = m F ∫ 0 v m / 2 v ( 1 − v 2 v m 2 ) − 1 d v \int_0^xdx = \frac{m}{F}\int_0^{v_m/2}v(1-\frac{v^2}{v_m^2})^{-1}dv 0xdx=Fm0vm/2v(1vm2v2)1dv

x = m v m 2 2 F l n 4 3 x = \frac{mv_m^2}{2F}ln\frac{4}{3} x=2Fmvm2ln34

例题2:质量为𝑚的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用。比例系数为𝑘。𝑘为正常数。该下落物体的收尾速度(即最后物体做匀速直线的速度)将是?

最重要的是理解到:当a = 0的时候,速度 v m v_m vm,之后就匀速了。

所以:收尾速度是 m g k \sqrt{\frac{mg}{k}} kmg


4. 功和动能定理

元功 d A = F ⃗ ∗ d r ⃗ = F c o s θ ∣ d r ⃗ ∣ dA = \vec{F}*d\vec{r} = F cos \theta |d\vec{r}| dA=F dr =Fcosθdr

变力功
在这里插入图片描述
A = ∫ a b F c o s θ d s A = \int_a^bFcos\theta ds A=abFcosθds

瞬时功率
P = d A d t P = \frac{dA}{dt} P=dtdA

功是过程量,能是状态量

动能定理 A = 1 2 ( v 1 2 − v 2 2 ) A = \frac{1}{2}(v_1^2-v_2^2) A=21(v12v22)

保守力:做功只和始末位置有关。非保守力的就是做功和路径有关,最典型的是摩檫力。

弹性势能 E p = 1 2 k x 2 E_p = \frac{1}{2}kx^2 Ep=21kx2

动量 P ⃗ = m v ⃗ \vec{P} = m\vec{v} P =mv

F ⃗ = d ( m v ⃗ ) d t \vec{F} = \frac{d(m\vec{v})}{dt} F =dtd(mv )

冲量 I ⃗ = F ⃗ Δ t \vec{I} = \vec{F}\Delta{t} I =F Δt(力在时间上的累积)

I ⃗ = ∫ t 1 t 2 F ⃗ ( t ) d t \vec{I}=\int_{t_1}^{t_2}\vec{F}(t)dt I =t1t2F (t)dt

冲量是过程量,动量是状态量

动量守恒定律 ∫ t 1 t 2 F 外 ⃗ d t = ∑ m i v i ⃗ − ∑ m i v i 0 ⃗ \int_{t_1}^{t_2}\vec{F_外}dt=\sum{m_i\vec{v_i}}-\sum{m_i\vec{v_{i0}}} t1t2F dt=mivi mivi0

做功的话我们需要关注对象,也就是说我们需要一定的参考坐标系:

例题:一个物体放在水平传送带上,物体与传送带无相对滑动,当传送带作匀速运动时,静摩擦力对物体作功为,当传送带作加速运动时,静摩擦力对物体作功为,当传送带作减速运动时,静摩擦力对物体作功为


例题2:一质点在如图所示的坐标平面内作圆运动,有一力 F ⃗ = F 0 ( x i ⃗ + y j ⃗ ) \vec{F} = F_0(x\vec{i}+y\vec{j}) F =F0(xi +yj )作用在质点上,求质点从原点运动到(0,2𝑅)位置过程中,力所作的功

A x = ∫ 0 0 F x d x = 0 A_x = \int_0^0F_xdx = 0 Ax=00Fxdx=0
A y = ∫ 0 2 R F 0 y d y = 2 F 0 R 2 A_y = \int_0^{2R}F_0ydy = 2F_0R^2 Ay=02RF0ydy=2F0R2
A = A x + A y A=A_x+A_y A=Ax+Ay


例题3:质量为2kg的物体由静止出发沿直线运动,作用在物体上的力为𝐹 = 6𝑡(𝑁)。试求在头2s内,此力对物体做的功。


怎么想:先看过程量:t,也就是我们需要一个: A = ∫ 0 2 ? d t A = \int_0^2?dt A=02?dt的式子,?的地方只能是关于t的表达式。

F = 6 t = m d v d t F = 6t = m\frac{dv}{dt} F=6t=mdtdv

一旦一个式子里面出现一个两个 d d d的话,我们同时对这个式子两边一起积分的话,就能得到题目之间的关系。

∫ 0 v d v = ∫ 0 t 3 t d t \int_0^v{dv}=\int_0^t{3tdt} 0vdv=0t3tdt
v = 1.5 t 2 v = 1.5t^2 v=1.5t2
v = d x d t v = \frac{dx}{dt} v=dtdx
A = ∫ F d x = ∫ 0 2 9 t 3 d t = 36 A=\int{Fdx}=\int_0^29t^3dt=36 A=Fdx=029t3dt=36


例题 质量𝑚 = 1𝑘𝑔的物体,在坐标原点处从静止出发,在水平面内沿𝑥轴运动,其所受合力方向与运动方向相同,合力大小为𝑓 = 3 + 2𝑥(国际单位制),计算(1)物体在开始运动的3𝑚内,合力所作功?(2)当𝑥 = 3𝑚时,物体的速率?

A = ∫ 0 3 f d x = ∫ 0 3 ( 3 + 2 x ) d x = 18 A = \int_0^3fdx=\int_0^3(3+2x)dx=18 A=03fdx=03(3+2x)dx=18
A = 1 2 m ( v 2 − 0 ) A = \frac{1}{2}m(v^2-0) A=21m(v20)


例题
对功的概念有以下几种说法:
(1)保守力作正功时,系统内相应的势能增加;
(2)质点运动经一闭合路径,保守力对质点作的功为零;
(3)作用力和反作用力大小相等、方向相反,两者所作功的代数和必为零。


(1)保守力做正功。系统的势能会减少
(2)正确
(3)等于力和两者相对位移的乘积。


功能分析例子
例题:有一轻弹簧,其一端系在铅直放置的圆环顶点𝑃,另一端系一质量为𝑚的小球,小球穿过圆环并在圆环上运动(不计摩擦)。开始小球静止于点𝐴,弹簧处于自然状态,其长度为圆环半径𝑅;当小球运动到圆环的底端点𝐵时,小球对圆环没有压力。求弹簧的劲度系数。
在这里插入图片描述


机械能是动能和势能的总和,那么的话,我们的弹簧势能,重力势能,以及小球获得的动能,我们是可以看成是一个机械能守恒的系统的。

利用机械能守恒定理我们可以得到: 1 2 m v B 2 + 1 2 k R 2 = m g R 3 2 \frac{1}{2}mv_B^2+\frac{1}{2}kR^2=mgR\frac{3}{2} 21mvB2+21kR2=mgR23

再根据向心力公式: k R − m g = m v B 2 R kR - mg = m\frac{v_B^2}{R} kRmg=mRvB2

从上面式子能解: k = 2 m g R k=\frac{2mg}{R} k=R2mg


动量冲量:
例题:一质量为0.05𝑘𝑔、速率为 10 m s − 1 10ms^{-1} 10ms1的刚球,以与钢板法线呈45°角的方向撞击在钢板上,并以相同的速率和角度弹回来。设碰撞时间为0.05𝑠。求在此时间内钢板所受到的平均冲力 F ⃗ \vec{F} F

:首先我们需要对这个系统进行参考系分解:
在这里插入图片描述
从x的角度出发:
F x ⃗ Δ t = m v 2 x − m v 1 x = m v c o s a − ( − m v c o s a ) = 2 m v c o s a \vec{F_x}\Delta t = mv_{2x}-mv_{1x}=mvcosa-(-mvcosa)=2mvcosa Fx Δt=mv2xmv1x=mvcosa(mvcosa)=2mvcosa

从y的角度出发:
F y ⃗ Δ t = m v 2 y − m v 1 y = 0 \vec{F_y}\Delta t = mv_{2y} - mv_{1y} = 0 Fy Δt=mv2ymv1y=0

F ˉ = 2 m v c o s a Δ t = 14.1 N \bar{F} = \frac{2mvcos a}{\Delta {t}} = 14.1N Fˉ=Δt2mvcosa=14.1N


例题:一颗子弹在枪筒里面前进所受到的合力大小为: F = 400 − 4 ∗ 1 0 5 3 t ( S I ) F = 400- \frac{4*10^5}{3}t(SI) F=40034105t(SI),已知子弹的质量 m = 0.002 k g m=0.002kg m=0.002kg,求(1)子弹走完枪筒全场所需的时间(2)子弹在枪筒所受到的力的冲量(3)子弹从枪口射出的速率

最重要的是我们需要知道在什么地方合力为0,也就是我们常说的a=0的地方,我们推测就是离开枪筒的瞬间,我们的a = 0。

所以: t = 0.003 s t = 0.003s t=0.003s

冲量: I = ∫ 0 0.03 F d t = 400 t − 2 3 ∗ 1 0 5 t 2 = 0.6 N ∗ s I = \int_0^{0.03}Fdt=400t - \frac{2}{3}*10^5t^2=0.6N*s I=00.03Fdt=400t32105t2=0.6Ns

速率: m v = I mv = I mv=I


例题:动量守恒,机械能不一定守恒。对于一个系统而言,若果外力做功为0,而内力是保守力,那么其机械能守恒。


例题:如图所示,质量为𝑚、速度为𝑣的钢球,射向质量为𝑚′的靶,靶中心有一个小孔,内有劲度系数为𝑘的弹簧,此靶最初处于静止状态,但可在水平面上作无摩擦滑动。求钢球射入靶内弹簧后,弹簧的最大压缩距离。
在这里插入图片描述


假设弹簧的最大压缩量是 x 0 x_0 x0,当小球最后和靶子共同运动的速度是 v 1 v_1 v1,整体动量守恒

m v = ( m + m ′ ) v 1 mv = (m+m')v_1 mv=(m+m)v1

又因为机械能守恒:

1 2 m v 2 = 1 2 ( m + m ′ ) v 1 2 + 1 2 k x 0 2 \frac{1}{2}mv^2 = \frac{1}{2}(m+m')v_1^2+\frac{1}{2}kx_0^2 21mv2=21(m+m)v12+21kx02

所以: x 0 = v ( m m ′ ) k ( m + m ′ ) x_0=v\sqrt{\frac{(mm')}{k(m+m')}} x0=vk(m+m)(mm)


5. 刚体转动的运动学

刚体是质点模型的一个实际化的研究,分为平动和转动,转动也分为定州转动和非定轴的转动。

我们需要研究的物理量:

瞬间角速度 w = d θ d t w=\frac{d\theta}{dt} w=dtdθ

瞬间角加速度 β = d w d t = d 2 θ d t \beta =\frac{dw}{dt} =\frac{d^2\theta}{dt} β=dtdw=dtd2θ

满足运动公式 θ = w 2 − w 0 2 2 β \theta = \frac{w^2-w_0^2}{2\beta} θ=2βw2w02

切向角速度,法向加速度(这个就是向心加速度),角加速度。

角 加 速 度 ∗ R = 切 向 加 速 度 角加速度*R = 切向加速度 R=

角 速 度 2 ∗ R = 法 向 加 速 度 角速度^2*R = 法向加速度 2R=

线 速 度 = 角 速 度 ∗ R 线速度 = 角速度*R 线=R

转动惯量 I = 1 2 m R 2 I=\frac{1}{2}mR^2 I=21mR2

d I = r 2 d m dI = r^2dm dI=r2dm

取决于刚体的质量,质量的空间分布和轴的位置


例题:一质点从静止出发沿半径𝑅 = 1𝑚的圆周运动,其角加速度随时间𝑡的变化规律是𝛽 = 12𝑡^2 − 6𝑡(𝑆𝐼)。则质点的角速度𝜔 =?,切向加速度𝑎𝜏 =?。

β = d w d t = 12 t 2 − 6 t \beta = \frac{dw}{dt}=12t^2-6t β=dtdw=12t26t
∫ 0 w d w = ∫ 0 t ( 12 t 2 − 6 t ) d t \int_0^wdw = \int_0^t(12t^2-6t)dt 0wdw=0t(12t26t)dt

w = 4 t 3 − 3 t 2 ( r a d / s ) w = 4t^3-3t^2 (rad/s) w=4t33t2(rad/s)
a = R β a=R\beta a=Rβ


例题:一质点沿半径为𝑅 = 0.1𝑚的圆周运动,其角位置𝜃随时间𝑡的变化规律是𝜃 = 2 + 4𝑡^2(𝑆𝐼)。在𝑡 = 2𝑠时,求它的法向加速度和切向加速度

法向加速度就是向心加速度: a n = v 2 R = R w 2 a_n = \frac{v^2}{R} =Rw^2 an=Rv2=Rw2

w = d θ d t = 8 t w = \frac{d\theta}{dt}=8t w=dtdθ=8t
β = d w d t = 8 \beta=\frac{dw}{dt}=8 β=dtdw=8

切向加速度: a i = R β a_i=R\beta ai=Rβ


例题:一飞轮半径为0.2𝑚、转速为150𝑟 ∙ 𝑚𝑖𝑛−1, 因受制动而均匀减速,经30𝑠停止转动。试求:(1)角加速度和在此时间内飞轮所转的圈数;(2)制动开始后𝑡 = 6𝑠时飞轮的角速度;(3)𝑡 = 6𝑠时飞轮边缘上一点的线速度、切向加速度和法向加速度

这里好就好在是匀减速运动。

w 0 = 5 π r a d ∗ s − 1 w_0=5\pi rad*s^{-1} w0=5πrads1

t = 30 s , w = 0 t=30s,w=0 t=30sw=0

β = w − w 0 t = − π 6 r a d ∗ s − 1 \beta=\frac{w-w_0}{t}=-\frac{\pi}{6} rad*s^{-1} β=tww0=6πrads1

θ = w 2 − w 0 2 2 β \theta = \frac{w^2-w_0^2}{2\beta} θ=2βw2w02

线速度: v = r w v = rw v=rw
法向加速度: a n = r w 2 a_n=rw^2 an=rw2
切向加速度: a i = r β a_i=r\beta ai=rβ


转动惯量例题:
例题:求质量为𝑚、半径为𝑅、厚为𝑙的均匀圆盘的转动惯量。轴与盘平面垂直并通过盘心。

密度为: ρ = m π R 2 l \rho=\frac{m}{\pi R^2l} ρ=πR2lm

d m = ρ 2 π r d r l dm = \rho 2\pi rdr l dm=ρ2πrdrl
d I = r 2 d m = ρ 2 π r 3 d r l dI=r^2dm=\rho 2\pi r^3drl dI=r2dm=ρ2πr3drl
I = ∫ 0 R ρ 2 π r 3 d r l I=\int_0^R\rho 2\pi r^3drl I=0Rρ2πr3drl

I = 1 2 m R 2 I=\frac{1}{2}mR^2 I=21mR2


例题:求长为𝑙、质量为𝑚的均匀细棒对图中不同轴的转动惯量。 d m = λ d x dm = \lambda dx dm=λdx
在这里插入图片描述

I A = ∫ 0 l x 2 λ d x = 1 3 m l 2 I_A = \int_0^lx^2\lambda dx = \frac{1}{3}ml^2 IA=0lx2λdx=31ml2

I C = ∫ − l 2 l 2 x 2 λ d x = 1 12 m l 2 I_C = \int_{-\frac{l}{2}}^{\frac{l}{2}}x^2\lambda dx = \frac{1}{12} m l^2 IC=2l2lx2λdx=121ml2


6. 刚体转动的力学

力矩反映力的作用点的位置对物体运动的影响。我们在研究转动问题的时候,需要到转动力矩,利用右手螺旋法则可以解决力矩的方向问题。

在这里插入图片描述
M ⃗ = r ⃗ F ⃗ \vec{M} = \vec{r}\vec{F} M =r F

刚体内作用力和反作用力的力矩互相抵消

转动定律 M = I β = I d w d t M = I\beta = I \frac{dw}{dt} M=Iβ=Idtdw

解决刚体的转动问题的步骤:找转轴,分析手里,求合力矩,利用转动定律求角加速度,然后确定刚体的转动状态。


例题:如图,有一半径为𝑅质量为𝑚′的匀质圆盘,可绕通过盘心𝑂垂直盘面的水平轴转动。转轴与圆盘之间的摩擦略去不计。圆盘上绕有轻而细的绳索,绳的一端固定在圆盘上,另一端系质量为𝑚的物体。试求物体下落时的加速度、绳中的张力和圆盘的角加速度

在这里插入图片描述

列方程;

牛二: m g − T = m a y mg-T = ma_y mgT=may
转动定律: T R = I β TR = I\beta TR=Iβ
角速度运动学: a i = R β a_i = R\beta ai=Rβ
转动惯量: I = 1 2 m ′ R 2 I = \frac{1}{2}m'R^2 I=21mR2


例题:一不能伸缩的轻绳跨过一轴承光滑的定滑轮,绳两端分别悬有质量为𝑚1和𝑚2的物体,𝑚1 < 𝑚2。滑轮质量为𝑚,半径为𝑟,可视为圆盘。绳与轮之间无相对滑动,试求物体的加速度和绳的张力。

在这里插入图片描述

同理:

  • 【1】牛二:
    m 2 g − T 2 = m 2 a m_2g-T_2 = m_2a m2gT2=m2a
    T 1 − m 1 g = m 1 a T_1-m_1g=m_1a T1m1g=m1a

  • 【2】转动定律:
    ( T 2 − T 1 ) R = I β (T_2-T_1)R = I\beta (T2T1)R=Iβ

  • 【3】角速度运动学:
    a i = R β a_i = R\beta ai=Rβ

  • 【4】转动惯量:
    I = 1 2 m ′ R 2 I = \frac{1}{2}m'R^2 I=21mR2


例题:某飞轮的直径𝑑 = 0.5𝑚,转动惯量𝐼 = 2.4 k g ∗ m 2 2.4kg*m^2 2.4kgm2,转速𝑛 =1000𝑟 ∙ 𝑚𝑖𝑛−1。若制动时闸瓦对轮的正压力为490𝑁,闸瓦与轮间的滑动摩擦因数𝜇 = 0.4,问:制动后飞轮转过多少圈停止

在这里插入图片描述

摩檫力: f = μ N = 196 N f =\mu N = 196N f=μN=196N
摩擦力转动定律: f R = I β fR = I\beta fR=Iβ

因为转动惯量知道,因此,我们可以求出 β = − 20.4 ( r a d ∗ s − 2 ) \beta=-20.4(rad*s^{-2}) β=20.4(rads2)

制动之后的飞轮做匀减速转动,因为最后的时候的 w = 0 w=0 w=0

因此可以求出在制动过程所走过的路程(角度):

θ = w 2 − w 0 2 2 β \theta = \frac{w^2-w_0^2}{2\beta} θ=2βw2w02


例题:如图,一通风机的转动部分以初角速度 w 0 w_0 w0绕其轴转动,空气的阻力矩与角速度成正比,比例系数𝐶为一常量。转动部分对其轴的转动惯量为𝐼,问:(1)经过多长时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?

(1)
转动定律: − C w = I β -Cw=I\beta Cw=Iβ

所以: β = − C w I = d w d t \beta = -\frac{Cw}{I} =\frac{dw}{dt} β=ICw=dtdw

∫ w 0 w d w d t = ∫ 0 t − C I d t \int_{w_0}^{w}\frac{dw}{dt} = \int_0^{t}-\frac{C}{I}dt w0wdtdw=0tICdt

得到: w = w 0 e − C I t w = w_0e^{-\frac{C}{I}t} w=w0eICt

w = w 0 2 w = \frac{w_0}{2} w=2w0,那么 t = I C l n 2 t=\frac{I}{C}ln2 t=CIln2

(2)

w = d θ d t w = \frac{d\theta}{dt} w=dtdθ
∫ 0 θ d θ = ∫ 0 t w 0 e − C I t d t \int_0^\theta d\theta =\int_0^t{w_0}e^{-\frac{C}{I}t}dt 0θdθ=0tw0eICtdt

θ = I w 0 2 C \theta = \frac{Iw_0}{2C} θ=2CIw0

转过的圈数: θ 2 π \frac{\theta}{2\pi} 2πθ


7. 刚体转动的功能定理

力矩的功 d A = M d θ dA = Md\theta dA=Mdθ

根据定轴的转动定律: M = I β = I d w d t M = I\beta = I \frac{dw}{dt} M=Iβ=Idtdw

角动量守恒定理 ∫ M d t = I w ⃗ − I 0 w 0 ⃗ \int M dt=I\vec{w}-I_0\vec{w_0} Mdt=Iw I0w0

内力矩不改变系统的角动量。

定轴运动和直线运动的对比:
在这里插入图片描述


例题:一半径为𝑅的光滑圆环置于竖直平面内。一质量为𝑚的小球穿在圆环上,并可在圆环上滑动。小球开始时静止于圆环上的点𝐴(该点在通过环心𝑂的水平面上),然后从𝐴点开始下滑。设小球与圆环间的摩擦略去不计。求小球滑到点𝐵时对环心𝑂的角动量和角速度。

在这里插入图片描述

重力矩: M = m g R c o s θ M = mgRcos\theta M=mgRcosθ
质点的角动量定理: m g R c o s θ = d L d t mgRcos\theta = \frac{dL}{dt} mgRcosθ=dtdL

所以: d L = m g R c o s θ d t dL = mgRcos\theta dt dL=mgRcosθdt

已知: w = d θ d t w=\frac{d\theta}{dt} w=dtdθ

L = R m v = m R 2 w L = Rmv =mR^2w L=Rmv=mR2w

得到: L d L = m 2 g R 3 c o s θ d θ LdL=m^2gR^3cos\theta d\theta LdL=m2gR3cosθdθ

积分上式中:
∫ 0 L L d L = m 2 g R 3 ∫ 0 θ c o s θ d θ \int_0^LLdL=m^2gR^3\int_0^{\theta}cos\theta d\theta 0LLdL=m2gR30θcosθdθ

得到: L = m R 2 3 ( 2 g s i n θ ) 1 2 L = mR^{\frac{2}{3}}(2gsin\theta)^{\frac{1}{2}} L=mR32(2gsinθ)21

得到: w = L m R 2 = ( 2 g R s i n θ ) 1 2 w = \frac{L}{mR^2} = (\frac{2g}{R}sin\theta)^{\frac{1}{2}} w=mR2L=(R2gsinθ)21


电学

1. 静电场

电荷守恒定律:在一个没有外界电荷交换的系统内,正负电荷的代数和在屋里过程中保持不变

库伦定律 f = 1 4 π ε q 1 q 2 r 2 f = \frac{1}{4\pi \varepsilon} \frac{q_1q_2}{r^2} f=4πε1r2q1q2

电场强度:电场中某点的电场强度的大小等于单位电荷在该点受力的大小,其方向为正电荷在该点受力的方向。

E ⃗ = F ⃗ q \vec{E}=\frac{\vec{F}}{q} E =qF

综合上式子,我们可以知道: E ⃗ = Q 4 π ε 0 r 2 \vec{E}=\frac{Q}{4\pi \varepsilon_0 r^2} E =4πε0r2Q

需要注意的是,当 r → 0 r\rightarrow 0 r0的时候,点电荷的场强公式将会不成立。

场强叠加原理 E ⃗ = ∫ d E ⃗ = ∫ Q 1 4 π ε 0 d q r 2 r ^ \vec{E}=\int d\vec{E}=\int_Q \frac{1}{4\pi \varepsilon_0} \frac{dq}{r^2} \hat{r} E =dE =Q4πε01r2dqr^

电通量:通过任意面元的电场线的数量 通过这个面元的电通量。

ϕ e = ∫ s d ϕ e = ∫ s E ⃗ d S ⃗ \phi_e=\int_sd\phi_e = \int_s \vec{E} d\vec{S} ϕe=sdϕe=sE dS

高斯定理:真空中的静电场中,穿过任何一闭合曲面𝑆的电通量𝜙𝑒,等于该曲面所包围的电荷的代数和的𝜀0分之一倍。

ϕ e = ∮ s E ⃗ d s ⃗ = 1 ε 0 ∑ q i \phi_e = \oint_s \vec{E}d\vec{s} = \frac{1}{\varepsilon_0} \sum q_i ϕe=sE ds =ε01qi

这个闭合的曲面我们叫做高斯面

高斯定理的相关
【1】高斯定理中的场强全部是由全部电荷产生的
【2】电通量只决定他所包含的电荷,对于闭合曲面外的电荷对电通量没有贡献
【3】高斯面上各点的电场强度为零时,穿过高斯面的电通量一定为零,同时电荷的代数和为0,但不代表没有电荷
【4】场强是高斯面内外电荷产生的合场强

高斯定理使用于电荷分布具有空间对称性的情况:

【1】均匀无限长带电圆柱面的电场
【2】均匀带电球面的电场
【3】均匀带电球体的电场
【4】均匀带电无限大平面的电场
【5】均匀带电球体空腔部分的电场


例题:有一边长为𝑎的正方形平面,其中垂线上距正方形中心𝑂点为𝑎/2处有一电量为𝑞的正点电荷,则通过该正方形平面的电通量为?
在这里插入图片描述

∮ s E ⃗ d S ⃗ = q ε 0 \oint_s \vec{E}d\vec{S} = \frac{q}{\varepsilon_0} sE dS =ε0q

6个面,所以最后的电通量是 q 6 ε 0 \frac{q}{6\varepsilon_0} 6ε0q


例题:在真空中,𝐴 、𝐵两板相距𝑑,面积都为𝑆(平板的尺寸远大于两板间距),𝐴 、𝐵两板各带+𝑞 、−𝑞。则两板间的相互作用力为?

E = q 2 ε 0 S E = \frac{q}{2\varepsilon_0S} E=2ε0Sq

F = E q F = Eq F=Eq

F = q 2 2 ε 0 S F = \frac{q^2}{2\varepsilon_0S} F=2ε0Sq2


我们需要区分是(板间)还是(板上)

例题:求两个平行无限大均匀带电平面的(间)场强分布。设面电荷密度分别为 σ 1 = + σ \sigma_1 =+\sigma σ1=+σ σ 2 = − σ \sigma_2 = -\sigma σ2=σ

E c = E + + E − = 2 ∗ σ 2 ε 0 E_c = E_{+}+E_{-} = 2 * \frac{\sigma}{2\varepsilon_0} Ec=E++E=22ε0σ


例题:一半径为𝑅的带电球体,其体电荷密度 ρ = K r 2 \rho = Kr^2 ρ=Kr2,𝐾为正常量,𝑟为球心到球内一点的距离,求此带电球体所产生的场强分布

:取球面作为高斯面:
ϕ e = ∮ s E ⃗ d S ⃗ = q ε 0 \phi_e = \oint_s \vec{E}d\vec{S} = \frac{q}{\varepsilon_0} ϕe=sE dS =ε0q

讨论:

【1】当 r > = R r>=R r>=R

q = ∫ V ρ d V = ∫ 0 R k r 2 4 π r 2 d r = 4 5 k π R 5 q = \int_V \rho dV = \int_0^R kr^24\pi r^2 dr = \frac{4}{5}k \pi R^5 q=VρdV=0Rkr24πr2dr=54kπR5

E = ϕ e 4 = K R 5 5 ε 0 r 2 E = \frac{\phi_e}{4}=\frac{KR^5}{5\varepsilon_0r^2} E=4ϕe=5ε0r2KR5

【2】当 r < R r<R r<R

q = ∫ V ρ d V = ∫ 0 r k r 2 4 π r 2 d r = 4 5 k π r 5 q = \int_V \rho dV = \int_0^r kr^24\pi r^2 dr = \frac{4}{5}k \pi r^5 q=VρdV=0rkr24πr2dr=54kπr5

E = ϕ e 4 = K r 3 5 ε 0 E = \frac{\phi_e}{4}=\frac{Kr^3}{5\varepsilon_0} E=4ϕe=5ε0Kr3


半径为𝑅的均匀带电球面(电荷面密度𝜎)外的电场:

E ⃗ = σ R 2 ε 0 r 3 r ˉ \vec{E} = \frac{\sigma R^2}{\varepsilon_0 r^3}\bar{r} E =ε0r3σR2rˉ


静电场力是保守力:静电场力所做的功和路径无关

静电场环路定理:在静电场中,场强沿任意闭合路径的线积分等于零

运动电荷不是保守场,而是非保守场

电势能和电场力做功:

A a b = ∫ a b q 0 E ⃗ d l ⃗ = E p a − E p b A_{ab} = \int_{ab}q_0 \vec{E} d \vec{l} = E_{pa} - E_{pb} Aab=abq0E dl =EpaEpb

在这里插入图片描述

电势差 U a b = A a b q 0 = E p a q 0 − E p b q 0 = U a − U b = ∫ a b E ⃗ d l ⃗ U_{ab} = \frac{A_{ab}}{q_0}=\frac{E_{pa}}{q_0}-\frac{E_{pb}}{q_0}=U_a-U_b =\int_a^b\vec{E} d\vec{l} Uab=q0Aab=q0Epaq0Epb=UaUb=abE dl

A a b = q 0 ∫ a b E d l = q 0 ( U a − U b ) A_{ab} = q_0\int_a^bEdl =q_0(U_a-U_b) Aab=q0abEdl=q0(UaUb)

点电荷的电势 U p = q 4 π ε r U_p=\frac{q}{4 \pi \varepsilon r} Up=4πεrq


例题:一带电量为𝑄、半径为𝑅的均匀带电球体,求电势分布。

我们先求场强分布:(根据高斯定理,然后分类讨论)

【1】r<R: E 内 = Q r 4 π ε R 3 r ^ E_{内} = \frac{Qr}{4\pi \varepsilon R^3}\hat{r} E=4πεR3Qrr^

【2】r>=R: E 外 = Q 4 π ε r 2 r ^ E_{外} = \frac{Q}{4\pi \varepsilon r^2}\hat{r} E=4πεr2Qr^


(无限远作为零势能点)计算电势:

U = ∫ P ∞ E d l U = \int^{\infty}_PEdl U=PEdl

【1】球内电势: U p = ∫ r R E 内 d l + ∫ R ∞ E 外 d l = Q 8 π ε R 3 ( 3 R 2 − r 2 ) U_p = \int_r^{R}E_{内}dl+\int_R^{\infty}E_{外}dl=\frac{Q}{8\pi \varepsilon R^3}(3R^2-r^2) Up=rREdl+REdl=8πεR3Q(3R2r2)

【2】球外电势: U p = ∫ r ∞ Q 4 π ε 0 r 2 d r = Q 4 π ε r U_p = \int_r^{\infty}\frac{Q}{4\pi \varepsilon_0 r^2}dr=\frac{Q}{4\pi \varepsilon r} Up=r4πε0r2Qdr=4πεrQ


(取球心作为零势能参考点)计算电势:
U = ∫ P 0 E d l U = \int^{0}_PEdl U=P0Edl

【1】球内电势: U p = ∫ p 0 E d l = ∫ r 0 E 内 d l = ∫ r 0 Q r 4 π ε 0 R 3 d r = − Q r 2 8 π ε R 3 U_p = \int_p^0Edl=\int_r^0E_{内}dl=\int_r^0\frac{Qr}{4\pi \varepsilon_0 R^3}dr = - \frac{Qr^2}{8\pi \varepsilon R^3} Up=p0Edl=r0Edl=r04πε0R3Qrdr=8πεR3Qr2

【2】球外电势: U p = ∫ r R E 外 d l + ∫ R 0 E 内 d l = − Q ( 3 r − 2 R ) 8 π ε R r U_p = \int_r^RE_{外}dl+\int_R^0E_{内}dl=-\frac{Q(3r-2R)}{8\pi \varepsilon Rr} Up=rREdl+R0Edl=8πεRrQ(3r2R)


例题:计算均匀带电球面的电势

先求场强:
【1】球内:E=0
【2】球外: E = q 4 π ε r 2 r ^ E = \frac{q}{4 \pi \varepsilon r^2}\hat{r} E=4πεr2qr^

默认零势能点在无限远的地方:

场点在球内: U p = ∫ p ∞ E d l = ∫ r R 0 d l + ∫ R ∞ q 4 π ε r 2 = q 4 π ε R U_p = \int_p^{\infty}Edl = \int_r^R0dl+\int_R^{\infty}\frac{q}{4\pi \varepsilon r^2} = \frac{q}{4 \pi \varepsilon R} Up=pEdl=rR0dl+R4πεr2q=4πεRq

场点在球面外:
U p = ∫ p ∞ E d l = ∫ r ∞ q 4 π ε r 2 d r = q 4 π ε r U_p = \int_p^{\infty} Edl = \int_r^{\infty}\frac{q}{4 \pi \varepsilon r^2}dr = \frac{q}{4 \pi \varepsilon r} Up=pEdl=r4πεr2qdr=4πεrq

平行板的电势差 Δ U = E d \Delta U = Ed ΔU=Ed


例题:求一均匀带电细圆环轴线上任一点的电场强度

在这里插入图片描述


U = q 4 π ε x 2 + R 2 U = \frac{q}{4 \pi \varepsilon \sqrt{x^2+R^2}} U=4πεx2+R2 q

E = − ∂ U ∂ x E = -\frac{\partial U}{\partial x} E=xU


例题:一球壳半径为𝑅,带电量𝑞,在离球心𝑂为𝑟(𝑟 < 𝑅) 处一点的电势为(设“无限远”处为电势零点)

:这是球面问题: q 4 π ε R \frac{q}{4\pi \varepsilon R} 4πεRq


例题:在点电荷+2𝑞的电场中,如果取图中𝑃点处为电势零点,则𝑀点的电势为?

在这里插入图片描述


U = ∫ − a + a E d l U= \int_{-a}^{+a}Edl U=a+aEdl
E = 2 q 4 π ε ( 2 a ) 2 E = \frac{2q}{4 \pi \varepsilon (2a)^2} E=4πε(2a)22q
所以: − q 4 π ε a -\frac{q}{4\pi\varepsilon a} 4πεaq


例题:两个均匀带电同心球面,半径分别为𝑅1和𝑅2,所带电量分别为𝑄1和𝑄2,设无穷远处为电势零点,则距球心𝑟的𝑃点(𝑅1 < 𝑟 < 𝑅2)电势为?

这是个球面问题,因此,对于Q1而言,r在球面外,因由有 Q 1 4 π ε r \frac{Q1}{4 \pi \varepsilon r} 4πεrQ1,对于Q2而言是在球面内,因此有: Q 2 4 π ε R 2 \frac{Q_2}{4 \pi \varepsilon R_2} 4πεR2Q2

Q 1 4 π ε r + Q 2 4 π ε R 2 \frac{Q_1}{4 \pi \varepsilon r}+\frac{Q_2}{4 \pi \varepsilon R_2} 4πεrQ1+4πεR2Q2


以下都正确:

  • 电势处处相等的区域,场强一定为零
  • 电势在某一区域内为常量,则电场强度在该区域必定为零
  • 场强的方向总是从高电势指向低电势
  • 场强不变的空间,电势不一定处处为零

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值