力学
1. 矢量运动学基础
位置矢量: r ⃗ = x i ⃗ + y j ⃗ + z k ⃗ \vec{r}=x\vec{i}+y\vec{j}+z\vec{k} r=xi+yj+zk
某一点 P(x,y,z),单位向量 i ⃗ , j ⃗ , k ⃗ \vec{i},\vec{j},\vec{k} i,j,k
位置矢量的长度: ∣ r ∣ = x 2 + y 2 + z 2 |r|=\sqrt{x^2+y^2+z^2} ∣r∣=x2+y2+z2
方向描述: c o s α = x ∣ r ∣ cos\alpha = \frac{x}{|r|} cosα=∣r∣x, c o s β = y ∣ r ∣ cos\beta=\frac{y}{|r|} cosβ=∣r∣y, c o s γ = z ∣ r ∣ cos\gamma=\frac{z}{|r|} cosγ=∣r∣z
运动方程:位置和时间的变化关系, r ⃗ = x ( t ) i ⃗ + y ( t ) j ⃗ + z ( t ) k ⃗ \vec{r}=x(t)\vec{i}+y(t)\vec{j}+z(t)\vec{k} r=x(t)i+y(t)j+z(t)k
轨迹方程:假如我们用时间的分量式去消掉t的话,只剩下 f ( x , y , z ) = 0 f(x,y,z)=0 f(x,y,z)=0,那么这个方程叫做轨迹方程,直线运动的话运动轨迹是直线,曲线运动的运动轨迹是曲线。
位移: Δ r ⃗ = r B ⃗ − r A ⃗ = ( x B − x A ) i ⃗ + ( y B − y A ) j ⃗ + ( z B − z A ) k ⃗ \Delta \vec{r}=\vec{r_B}-\vec{r_A} = (x_B-x_A)\vec{i}+(y_B-y_A)\vec{j}+(z_B-z_A)\vec{k} Δr=rB−rA=(xB−xA)i+(yB−yA)j+(zB−zA)k
Δ
s
\Delta s
Δs:运动轨迹标量,也是运动轨迹的实际长度
Δ
r
\Delta r
Δr:矢量长度的差 =
∣
r
B
⃗
∣
−
∣
r
A
⃗
∣
|\vec{r_B}|-|\vec{r_A}|
∣rB∣−∣rA∣
Δ
r
⃗
\Delta \vec{r}
Δr:位移 =
r
B
⃗
−
r
A
⃗
\vec{r_B}-\vec{r_A}
rB−rA
把这个图记住就可以了:
平均速度/速率:
-
平均速度 v ⃗ ˉ = Δ r Δ t \bar{\vec{v}} =\frac{\Delta r}{\Delta t} vˉ=ΔtΔr
-
平均速率 v ˉ = Δ s Δ t \bar{v} = \frac{\Delta s}{\Delta t} vˉ=ΔtΔs
瞬时速度/速率:
- 瞬时速度 v ⃗ = d r ⃗ d t = l i m Δ t → 0 Δ r ⃗ Δ t \vec{v} = \frac{d\vec{r}}{dt} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{r}}{\Delta t} v=dtdr=limΔt→0ΔtΔr
- 瞬时速率 v = ∣ v ⃗ ∣ = d s d t = ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 v = |\vec{v}| = \frac{ds}{dt} = \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2+(\frac{dz}{dt})^2} v=∣v∣=dtds=(dtdx)2+(dtdy)2+(dtdz)2
平均加速度/瞬时加速度:
- 速度矢量差 Δ v ⃗ = v 2 ⃗ − v 1 ⃗ \Delta \vec{v} = \vec{v_2} - \vec{v_1} Δv=v2−v1
- 平均加速度 a ⃗ ˉ = Δ v ⃗ Δ t \bar{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t} aˉ=ΔtΔv
- 瞬时加速度 a ⃗ = l i m Δ t → 0 Δ v ⃗ Δ t = d v ⃗ d t = d 2 r ⃗ d t 2 \vec{a} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2} a=limΔt→0ΔtΔv=dtdv=dt2d2r
- 瞬时加速度大小 ∣ a ⃗ ∣ = ∣ d v ⃗ d t ∣ ≠ d ∣ v ⃗ ∣ d t |\vec{a}|=|\frac{d\vec{v}}{dt}| \neq \frac{d|\vec{v}|}{dt} ∣a∣=∣dtdv∣=dtd∣v∣
常用运动公式(必背):
- v = v 0 + a t v = v_0+at v=v0+at
- x = x 0 + v 0 t + 1 2 a t 2 x = x_0+v_0t+\frac{1}{2}at^2 x=x0+v0t+21at2
- v 2 − v 0 2 = 2 a ( x − x 0 ) v^2-v_0^2 = 2a(x-x_0) v2−v02=2a(x−x0)
- a = d v d t a = \frac{dv}{dt} a=dtdv
- v = d x d t v = \frac{dx}{dt} v=dtdx
- v = v 0 + ∫ t 0 t a d t ⇐ ⇒ ∫ v 0 v d v = ∫ t 0 t a d t v = v_0+\int_{t_0}^tadt \Leftarrow\Rightarrow \int_{v_0}^vdv = \int_{t_0}^tadt v=v0+∫t0tadt⇐⇒∫v0vdv=∫t0tadt
- x = x 0 + ∫ t 0 t v d t ⇐ ⇒ ∫ x 0 x d x = ∫ t 0 t v d t x = x_0+\int_{t_0}^tvdt \Leftarrow\Rightarrow \int_{x_0}^{x}dx = \int_{t_0}^{t}vdt x=x0+∫t0tvdt⇐⇒∫x0xdx=∫t0tvdt
例题1:飞机在起飞前以一定的加速度在跑道上做直线运动,已知其加速度𝑎=3𝑡^2+6𝑡+2;在𝑡=0的初始时刻,其位置在𝑥=0处,速度为零。试求起飞前任意时刻飞机运动的速度和位置。
解:已知 t = 0 , x 0 = 0 , v 0 = 0 t=0,x_0=0,v_0=0 t=0,x0=0,v0=0,
v = v 0 + ∫ t 0 t a d t v = v_0 + \int_{t0}^{t}adt v=v0+∫t0tadt
v = t 3 + 3 t 2 + 2 t v=t^3+3t^2+2t v=t3+3t2+2t
x = x 0 + ∫ t 0 t v d t x = x_0+\int_{t_0}^{t}vdt x=x0+∫t0tvdt
x = 1 4 t 4 + t 3 + t x=\frac{1}{4}t^4+t^3+t x=41t4+t3+t
2. 矢量运动学进阶(圆周)
切向/法向:切向沿着速度方向,垂直于速度方向为法轴
切向加速度/法向加速度:
-
a ⃗ = l i m Δ t → 0 Δ v ⃗ Δ t \vec{a} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v}}{\Delta t} a=limΔt→0ΔtΔv
-
a ⃗ = a n ⃗ + a i ⃗ \vec{a} = \vec{a_n} + \vec{a_i} a=an+ai
-
法向加速度 a n ⃗ = l i m Δ t → 0 Δ v 1 ⃗ Δ t \vec{a_n} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v_1}}{\Delta t} an=limΔt→0ΔtΔv1
-
切向加速度 a i ⃗ = l i m Δ t → 0 Δ v 2 ⃗ Δ t \vec{a_i} = lim_{\Delta t \rightarrow 0}\frac{\Delta \vec{v_2}}{\Delta t} ai=limΔt→0ΔtΔv2
圆周运动的法向加速度: a n = v 2 R a_n = \frac{v^2}{R} an=Rv2
实际上切向加速度和法向加速度可以定义一个运动的性质:
- a n = 0 , a i = 0 a_n = 0,a_i = 0 an=0,ai=0:匀速直线运动
- a n = 0 , a i ≠ 0 a_n = 0,a_i \neq 0 an=0,ai=0:变速直线运动
- a n ≠ 0 , a i = 0 a_n\neq 0,a_i=0 an=0,ai=0:匀速曲线运动
- a n ≠ 0 , a i ≠ 0 a_n\neq 0,a_i\neq0 an=0,ai=0:变速曲线运动
匀速圆周运动实际上是切向加速度变化的运动,因此是加速运动。
解决矢量运动学问题的关键:
r ⃗ ( t ) ← → v ⃗ ( t ) ← → a ⃗ ( t ) \vec{r}(t)\leftarrow\rightarrow\vec{v}(t)\leftarrow\rightarrow\vec{a}(t) r(t)←→v(t)←→a(t)
之间通过求导和积分进行过渡。
例题1:设有一个质点作半径为𝑟的圆周运动。质点沿圆周运动所经历的路程与时间的关系为𝑠=𝑏𝑡^2/2,并设𝑏为一常量。
(1)此质点在某一时刻的速率;
(2)法向加速度和切向加速度的大小
(3)总加速度。
解:
(1)求瞬时速率: v = d s d t = b t v=\frac{ds}{dt} = bt v=dtds=bt
(2)和(3)求加速度: a ⃗ = a n ⃗ + a i ⃗ \vec{a} = \vec{a_n}+\vec{a_i} a=an+ai
a n = v 2 R = ( b t ) 2 R a_n = \frac{v^2}{R}=\frac{(bt)^2}{R} an=Rv2=R(bt)2
a i = d v d t = b a_i = \frac{dv}{dt} = b ai=dtdv=b
∣ a ⃗ ∣ = ( a i ) 2 + ( a n ) 2 = b ( b 2 t 4 r 2 + 1 ) |\vec{a}| = \sqrt{(a_i)^2+(a_n)^2}=b(\frac{b^2t^4}{r^2}+1) ∣a∣=(ai)2+(an)2=b(r2b2t4+1)
方向: t a n α = a n a i = b t 2 r tan\alpha = \frac{a_n}{a_i}=\frac{bt^2}{r} tanα=aian=rbt2
套路:先求出瞬时速度,再求出法向加速度(向心加速度)(圆周运动的切向加速度是定死的),然后用 d v d t \frac{dv}{dt} dtdv求出法向加速度,求出加速度的方向和大小
例题2:一艘正在沿直线行驶的汽艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度的二次方成正比,即 a = − k v 2 a=−kv^2 a=−kv2,𝑘为常量。若发动机关闭瞬间汽艇的速度为 v 0 v_0 v0,试求该汽艇又行驶𝑥距离后的速度。
解:
a = d v d t = d v d x d t d x = v d v d x = − k v 2 a=\frac{dv}{dt}=\frac{dvdx}{dtdx}=v\frac{dv}{dx}=-kv^2 a=dtdv=dtdxdvdx=vdxdv=−kv2
v d v = − k v 2 d x vdv=-kv^2dx vdv=−kv2dx
∫ v 0 v d v v = ∫ x 0 x − k d x \int_{v_0}^v\frac{dv}{v}=\int_{x_0}^{x}-kdx ∫v0vvdv=∫x0x−kdx
v = v 0 e − k x v=v_0 e^{−kx} v=v0e−kx
3. 牛顿运动定律
牛顿第一定律:惯性定律
牛顿第二定律:力是改变物体状态的原因(仅适用于质点的运动)
F ⃗ = d P ⃗ d t = d ( m v ⃗ ) d t = m a ⃗ \vec{F} = \frac{d\vec{P}}{dt}=\frac{d(m\vec{v})}{dt}=m\vec{a} F=dtdP=dtd(mv)=ma
牛顿第三定律:作用力和反作用力
动力学综合问题的解决:
r ⃗ ( t ) ← → v ⃗ ( t ) ← → a ⃗ ( t ) ← → F ⃗ ( t ) \vec{r}(t)\leftarrow\rightarrow\vec{v}(t)\leftarrow\rightarrow\vec{a}(t)\leftarrow\rightarrow\vec{F}(t) r(t)←→v(t)←→a(t)←→F(t)
例题1:质量为𝑚的摩托车,在恒定的牵引力𝐹的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是 v m v_m vm。试计算摩托车从静止加速到 v m / 2 v_m/2 vm/2所需的时间以及所走过的路程
解:
列出牛二:
F
−
k
v
=
m
a
=
m
d
v
d
t
F- kv = ma = m \frac{dv}{dt}
F−kv=ma=mdtdv
最重要的是我们需要知道的是当加速度a = 0的时候,速率最大。
因此有:
k
=
F
v
m
2
k = \frac{F}{v_m^{2}}
k=vm2F
代入之后:
F ( 1 − v 2 v m 2 ) = m d v d t F(1-\frac{v^2}{v_m^{2}}) = m \frac{dv}{dt} F(1−vm2v2)=mdtdv
∫ 0 t d t = m F ∫ 0 v m / 2 ( 1 − v 2 v m 2 ) d v \int_0^t dt = \frac{m}{F}\int_0^{v_m/2}(1-\frac{v^2}{v_m^2})dv ∫0tdt=Fm∫0vm/2(1−vm2v2)dv
因此可以求出: t = m v m 2 F l n 3 t = \frac{mv_m}{2F}ln3 t=2Fmvmln3
如果求路程的话:
∫
0
x
d
x
=
m
F
∫
0
v
m
/
2
v
(
1
−
v
2
v
m
2
)
−
1
d
v
\int_0^xdx = \frac{m}{F}\int_0^{v_m/2}v(1-\frac{v^2}{v_m^2})^{-1}dv
∫0xdx=Fm∫0vm/2v(1−vm2v2)−1dv
x = m v m 2 2 F l n 4 3 x = \frac{mv_m^2}{2F}ln\frac{4}{3} x=2Fmvm2ln34
例题2:质量为𝑚的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用。比例系数为𝑘。𝑘为正常数。该下落物体的收尾速度(即最后物体做匀速直线的速度)将是?
解:
最重要的是理解到:当a = 0的时候,速度 v m v_m vm,之后就匀速了。
所以:收尾速度是 m g k \sqrt{\frac{mg}{k}} kmg
4. 功和动能定理
元功: d A = F ⃗ ∗ d r ⃗ = F c o s θ ∣ d r ⃗ ∣ dA = \vec{F}*d\vec{r} = F cos \theta |d\vec{r}| dA=F∗dr=Fcosθ∣dr∣
变力功:
A
=
∫
a
b
F
c
o
s
θ
d
s
A = \int_a^bFcos\theta ds
A=∫abFcosθds
瞬时功率:
P
=
d
A
d
t
P = \frac{dA}{dt}
P=dtdA
功是过程量,能是状态量
动能定理: A = 1 2 ( v 1 2 − v 2 2 ) A = \frac{1}{2}(v_1^2-v_2^2) A=21(v12−v22)
保守力:做功只和始末位置有关。非保守力的就是做功和路径有关,最典型的是摩檫力。
弹性势能: E p = 1 2 k x 2 E_p = \frac{1}{2}kx^2 Ep=21kx2
动量: P ⃗ = m v ⃗ \vec{P} = m\vec{v} P=mv,
F ⃗ = d ( m v ⃗ ) d t \vec{F} = \frac{d(m\vec{v})}{dt} F=dtd(mv)
冲量: I ⃗ = F ⃗ Δ t \vec{I} = \vec{F}\Delta{t} I=FΔt(力在时间上的累积)
I ⃗ = ∫ t 1 t 2 F ⃗ ( t ) d t \vec{I}=\int_{t_1}^{t_2}\vec{F}(t)dt I=∫t1t2F(t)dt
冲量是过程量,动量是状态量
动量守恒定律: ∫ t 1 t 2 F 外 ⃗ d t = ∑ m i v i ⃗ − ∑ m i v i 0 ⃗ \int_{t_1}^{t_2}\vec{F_外}dt=\sum{m_i\vec{v_i}}-\sum{m_i\vec{v_{i0}}} ∫t1t2F外dt=∑mivi−∑mivi0
做功的话我们需要关注对象,也就是说我们需要一定的参考坐标系:
例题:一个物体放在水平传送带上,物体与传送带无相对滑动,当传送带作匀速运动时,静摩擦力对物体作功为无,当传送带作加速运动时,静摩擦力对物体作功为正,当传送带作减速运动时,静摩擦力对物体作功为负
例题2:一质点在如图所示的坐标平面内作圆运动,有一力 F ⃗ = F 0 ( x i ⃗ + y j ⃗ ) \vec{F} = F_0(x\vec{i}+y\vec{j}) F=F0(xi+yj)作用在质点上,求质点从原点运动到(0,2𝑅)位置过程中,力所作的功
解:
A
x
=
∫
0
0
F
x
d
x
=
0
A_x = \int_0^0F_xdx = 0
Ax=∫00Fxdx=0
A
y
=
∫
0
2
R
F
0
y
d
y
=
2
F
0
R
2
A_y = \int_0^{2R}F_0ydy = 2F_0R^2
Ay=∫02RF0ydy=2F0R2
A
=
A
x
+
A
y
A=A_x+A_y
A=Ax+Ay
例题3:质量为2kg的物体由静止出发沿直线运动,作用在物体上的力为𝐹 = 6𝑡(𝑁)。试求在头2s内,此力对物体做的功。
解:
怎么想:先看过程量:t,也就是我们需要一个:
A
=
∫
0
2
?
d
t
A = \int_0^2?dt
A=∫02?dt的式子,?的地方只能是关于t的表达式。
F = 6 t = m d v d t F = 6t = m\frac{dv}{dt} F=6t=mdtdv
一旦一个式子里面出现一个两个 d d d的话,我们同时对这个式子两边一起积分的话,就能得到题目之间的关系。
∫
0
v
d
v
=
∫
0
t
3
t
d
t
\int_0^v{dv}=\int_0^t{3tdt}
∫0vdv=∫0t3tdt
v
=
1.5
t
2
v = 1.5t^2
v=1.5t2
v
=
d
x
d
t
v = \frac{dx}{dt}
v=dtdx
A
=
∫
F
d
x
=
∫
0
2
9
t
3
d
t
=
36
A=\int{Fdx}=\int_0^29t^3dt=36
A=∫Fdx=∫029t3dt=36
例题 质量𝑚 = 1𝑘𝑔的物体,在坐标原点处从静止出发,在水平面内沿𝑥轴运动,其所受合力方向与运动方向相同,合力大小为𝑓 = 3 + 2𝑥(国际单位制),计算(1)物体在开始运动的3𝑚内,合力所作功?(2)当𝑥 = 3𝑚时,物体的速率?
解:
A
=
∫
0
3
f
d
x
=
∫
0
3
(
3
+
2
x
)
d
x
=
18
A = \int_0^3fdx=\int_0^3(3+2x)dx=18
A=∫03fdx=∫03(3+2x)dx=18
A
=
1
2
m
(
v
2
−
0
)
A = \frac{1}{2}m(v^2-0)
A=21m(v2−0)
例题:
对功的概念有以下几种说法:
(1)保守力作正功时,系统内相应的势能增加;
(2)质点运动经一闭合路径,保守力对质点作的功为零;
(3)作用力和反作用力大小相等、方向相反,两者所作功的代数和必为零。
解:
(1)保守力做正功。系统的势能会减少
(2)正确
(3)等于力和两者相对位移的乘积。
功能分析例子
例题:有一轻弹簧,其一端系在铅直放置的圆环顶点𝑃,另一端系一质量为𝑚的小球,小球穿过圆环并在圆环上运动(不计摩擦)。开始小球静止于点𝐴,弹簧处于自然状态,其长度为圆环半径𝑅;当小球运动到圆环的底端点𝐵时,小球对圆环没有压力。求弹簧的劲度系数。
解:
机械能是动能和势能的总和,那么的话,我们的弹簧势能,重力势能,以及小球获得的动能,我们是可以看成是一个机械能守恒的系统的。
利用机械能守恒定理我们可以得到: 1 2 m v B 2 + 1 2 k R 2 = m g R 3 2 \frac{1}{2}mv_B^2+\frac{1}{2}kR^2=mgR\frac{3}{2} 21mvB2+21kR2=mgR23
再根据向心力公式: k R − m g = m v B 2 R kR - mg = m\frac{v_B^2}{R} kR−mg=mRvB2
从上面式子能解: k = 2 m g R k=\frac{2mg}{R} k=R2mg
动量冲量:
例题:一质量为0.05𝑘𝑔、速率为
10
m
s
−
1
10ms^{-1}
10ms−1的刚球,以与钢板法线呈45°角的方向撞击在钢板上,并以相同的速率和角度弹回来。设碰撞时间为0.05𝑠。求在此时间内钢板所受到的平均冲力
F
⃗
\vec{F}
F
解:首先我们需要对这个系统进行参考系分解:
从x的角度出发:
F
x
⃗
Δ
t
=
m
v
2
x
−
m
v
1
x
=
m
v
c
o
s
a
−
(
−
m
v
c
o
s
a
)
=
2
m
v
c
o
s
a
\vec{F_x}\Delta t = mv_{2x}-mv_{1x}=mvcosa-(-mvcosa)=2mvcosa
FxΔt=mv2x−mv1x=mvcosa−(−mvcosa)=2mvcosa
从y的角度出发:
F
y
⃗
Δ
t
=
m
v
2
y
−
m
v
1
y
=
0
\vec{F_y}\Delta t = mv_{2y} - mv_{1y} = 0
FyΔt=mv2y−mv1y=0
F ˉ = 2 m v c o s a Δ t = 14.1 N \bar{F} = \frac{2mvcos a}{\Delta {t}} = 14.1N Fˉ=Δt2mvcosa=14.1N
例题:一颗子弹在枪筒里面前进所受到的合力大小为: F = 400 − 4 ∗ 1 0 5 3 t ( S I ) F = 400- \frac{4*10^5}{3}t(SI) F=400−34∗105t(SI),已知子弹的质量 m = 0.002 k g m=0.002kg m=0.002kg,求(1)子弹走完枪筒全场所需的时间(2)子弹在枪筒所受到的力的冲量(3)子弹从枪口射出的速率
解:
最重要的是我们需要知道在什么地方合力为0,也就是我们常说的a=0的地方,我们推测就是离开枪筒的瞬间,我们的a = 0。
所以: t = 0.003 s t = 0.003s t=0.003s
冲量: I = ∫ 0 0.03 F d t = 400 t − 2 3 ∗ 1 0 5 t 2 = 0.6 N ∗ s I = \int_0^{0.03}Fdt=400t - \frac{2}{3}*10^5t^2=0.6N*s I=∫00.03Fdt=400t−32∗105t2=0.6N∗s
速率: m v = I mv = I mv=I
例题:动量守恒,机械能不一定守恒。对于一个系统而言,若果外力做功为0,而内力是保守力,那么其机械能守恒。
例题:如图所示,质量为𝑚、速度为𝑣的钢球,射向质量为𝑚′的靶,靶中心有一个小孔,内有劲度系数为𝑘的弹簧,此靶最初处于静止状态,但可在水平面上作无摩擦滑动。求钢球射入靶内弹簧后,弹簧的最大压缩距离。
解:
假设弹簧的最大压缩量是
x
0
x_0
x0,当小球最后和靶子共同运动的速度是
v
1
v_1
v1,整体动量守恒
m v = ( m + m ′ ) v 1 mv = (m+m')v_1 mv=(m+m′)v1
又因为机械能守恒:
1 2 m v 2 = 1 2 ( m + m ′ ) v 1 2 + 1 2 k x 0 2 \frac{1}{2}mv^2 = \frac{1}{2}(m+m')v_1^2+\frac{1}{2}kx_0^2 21mv2=21(m+m′)v12+21kx02
所以: x 0 = v ( m m ′ ) k ( m + m ′ ) x_0=v\sqrt{\frac{(mm')}{k(m+m')}} x0=vk(m+m′)(mm′)
5. 刚体转动的运动学
刚体是质点模型的一个实际化的研究,分为平动和转动,转动也分为定州转动和非定轴的转动。
我们需要研究的物理量:
瞬间角速度: w = d θ d t w=\frac{d\theta}{dt} w=dtdθ
瞬间角加速度: β = d w d t = d 2 θ d t \beta =\frac{dw}{dt} =\frac{d^2\theta}{dt} β=dtdw=dtd2θ
满足运动公式: θ = w 2 − w 0 2 2 β \theta = \frac{w^2-w_0^2}{2\beta} θ=2βw2−w02
切向角速度,法向加速度(这个就是向心加速度),角加速度。
角 加 速 度 ∗ R = 切 向 加 速 度 角加速度*R = 切向加速度 角加速度∗R=切向加速度
角 速 度 2 ∗ R = 法 向 加 速 度 角速度^2*R = 法向加速度 角速度2∗R=法向加速度
线 速 度 = 角 速 度 ∗ R 线速度 = 角速度*R 线速度=角速度∗R
转动惯量: I = 1 2 m R 2 I=\frac{1}{2}mR^2 I=21mR2
d I = r 2 d m dI = r^2dm dI=r2dm
取决于刚体的质量,质量的空间分布和轴的位置
例题:一质点从静止出发沿半径𝑅 = 1𝑚的圆周运动,其角加速度随时间𝑡的变化规律是𝛽 = 12𝑡^2 − 6𝑡(𝑆𝐼)。则质点的角速度𝜔 =?,切向加速度𝑎𝜏 =?。
解:
β
=
d
w
d
t
=
12
t
2
−
6
t
\beta = \frac{dw}{dt}=12t^2-6t
β=dtdw=12t2−6t
∫
0
w
d
w
=
∫
0
t
(
12
t
2
−
6
t
)
d
t
\int_0^wdw = \int_0^t(12t^2-6t)dt
∫0wdw=∫0t(12t2−6t)dt
w
=
4
t
3
−
3
t
2
(
r
a
d
/
s
)
w = 4t^3-3t^2 (rad/s)
w=4t3−3t2(rad/s)
a
=
R
β
a=R\beta
a=Rβ
例题:一质点沿半径为𝑅 = 0.1𝑚的圆周运动,其角位置𝜃随时间𝑡的变化规律是𝜃 = 2 + 4𝑡^2(𝑆𝐼)。在𝑡 = 2𝑠时,求它的法向加速度和切向加速度
解:
法向加速度就是向心加速度: a n = v 2 R = R w 2 a_n = \frac{v^2}{R} =Rw^2 an=Rv2=Rw2
w
=
d
θ
d
t
=
8
t
w = \frac{d\theta}{dt}=8t
w=dtdθ=8t
β
=
d
w
d
t
=
8
\beta=\frac{dw}{dt}=8
β=dtdw=8
切向加速度: a i = R β a_i=R\beta ai=Rβ
例题:一飞轮半径为0.2𝑚、转速为150𝑟 ∙ 𝑚𝑖𝑛−1, 因受制动而均匀减速,经30𝑠停止转动。试求:(1)角加速度和在此时间内飞轮所转的圈数;(2)制动开始后𝑡 = 6𝑠时飞轮的角速度;(3)𝑡 = 6𝑠时飞轮边缘上一点的线速度、切向加速度和法向加速度
解:
这里好就好在是匀减速运动。
w 0 = 5 π r a d ∗ s − 1 w_0=5\pi rad*s^{-1} w0=5πrad∗s−1
t = 30 s , w = 0 t=30s,w=0 t=30s,w=0
β = w − w 0 t = − π 6 r a d ∗ s − 1 \beta=\frac{w-w_0}{t}=-\frac{\pi}{6} rad*s^{-1} β=tw−w0=−6πrad∗s−1
θ = w 2 − w 0 2 2 β \theta = \frac{w^2-w_0^2}{2\beta} θ=2βw2−w02
线速度:
v
=
r
w
v = rw
v=rw
法向加速度:
a
n
=
r
w
2
a_n=rw^2
an=rw2
切向加速度:
a
i
=
r
β
a_i=r\beta
ai=rβ
转动惯量例题:
例题:求质量为𝑚、半径为𝑅、厚为𝑙的均匀圆盘的转动惯量。轴与盘平面垂直并通过盘心。
解:
密度为: ρ = m π R 2 l \rho=\frac{m}{\pi R^2l} ρ=πR2lm
d
m
=
ρ
2
π
r
d
r
l
dm = \rho 2\pi rdr l
dm=ρ2πrdrl
d
I
=
r
2
d
m
=
ρ
2
π
r
3
d
r
l
dI=r^2dm=\rho 2\pi r^3drl
dI=r2dm=ρ2πr3drl
I
=
∫
0
R
ρ
2
π
r
3
d
r
l
I=\int_0^R\rho 2\pi r^3drl
I=∫0Rρ2πr3drl
I = 1 2 m R 2 I=\frac{1}{2}mR^2 I=21mR2
例题:求长为𝑙、质量为𝑚的均匀细棒对图中不同轴的转动惯量。
d
m
=
λ
d
x
dm = \lambda dx
dm=λdx
解:
I A = ∫ 0 l x 2 λ d x = 1 3 m l 2 I_A = \int_0^lx^2\lambda dx = \frac{1}{3}ml^2 IA=∫0lx2λdx=31ml2
I C = ∫ − l 2 l 2 x 2 λ d x = 1 12 m l 2 I_C = \int_{-\frac{l}{2}}^{\frac{l}{2}}x^2\lambda dx = \frac{1}{12} m l^2 IC=∫−2l2lx2λdx=121ml2
6. 刚体转动的力学
力矩反映力的作用点的位置对物体运动的影响。我们在研究转动问题的时候,需要到转动力矩,利用右手螺旋法则可以解决力矩的方向问题。
M
⃗
=
r
⃗
F
⃗
\vec{M} = \vec{r}\vec{F}
M=rF
刚体内作用力和反作用力的力矩互相抵消
转动定律: M = I β = I d w d t M = I\beta = I \frac{dw}{dt} M=Iβ=Idtdw
解决刚体的转动问题的步骤:找转轴,分析手里,求合力矩,利用转动定律求角加速度,然后确定刚体的转动状态。
例题:如图,有一半径为𝑅质量为𝑚′的匀质圆盘,可绕通过盘心𝑂垂直盘面的水平轴转动。转轴与圆盘之间的摩擦略去不计。圆盘上绕有轻而细的绳索,绳的一端固定在圆盘上,另一端系质量为𝑚的物体。试求物体下落时的加速度、绳中的张力和圆盘的角加速度
解:
列方程;
牛二:
m
g
−
T
=
m
a
y
mg-T = ma_y
mg−T=may
转动定律:
T
R
=
I
β
TR = I\beta
TR=Iβ
角速度运动学:
a
i
=
R
β
a_i = R\beta
ai=Rβ
转动惯量:
I
=
1
2
m
′
R
2
I = \frac{1}{2}m'R^2
I=21m′R2
例题:一不能伸缩的轻绳跨过一轴承光滑的定滑轮,绳两端分别悬有质量为𝑚1和𝑚2的物体,𝑚1 < 𝑚2。滑轮质量为𝑚,半径为𝑟,可视为圆盘。绳与轮之间无相对滑动,试求物体的加速度和绳的张力。
解:
同理:
-
【1】牛二:
m 2 g − T 2 = m 2 a m_2g-T_2 = m_2a m2g−T2=m2a
T 1 − m 1 g = m 1 a T_1-m_1g=m_1a T1−m1g=m1a -
【2】转动定律:
( T 2 − T 1 ) R = I β (T_2-T_1)R = I\beta (T2−T1)R=Iβ -
【3】角速度运动学:
a i = R β a_i = R\beta ai=Rβ -
【4】转动惯量:
I = 1 2 m ′ R 2 I = \frac{1}{2}m'R^2 I=21m′R2
例题:某飞轮的直径𝑑 = 0.5𝑚,转动惯量𝐼 = 2.4 k g ∗ m 2 2.4kg*m^2 2.4kg∗m2,转速𝑛 =1000𝑟 ∙ 𝑚𝑖𝑛−1。若制动时闸瓦对轮的正压力为490𝑁,闸瓦与轮间的滑动摩擦因数𝜇 = 0.4,问:制动后飞轮转过多少圈停止
解:
摩檫力:
f
=
μ
N
=
196
N
f =\mu N = 196N
f=μN=196N
摩擦力转动定律:
f
R
=
I
β
fR = I\beta
fR=Iβ
因为转动惯量知道,因此,我们可以求出 β = − 20.4 ( r a d ∗ s − 2 ) \beta=-20.4(rad*s^{-2}) β=−20.4(rad∗s−2)
制动之后的飞轮做匀减速转动,因为最后的时候的 w = 0 w=0 w=0
因此可以求出在制动过程所走过的路程(角度):
θ = w 2 − w 0 2 2 β \theta = \frac{w^2-w_0^2}{2\beta} θ=2βw2−w02
例题:如图,一通风机的转动部分以初角速度 w 0 w_0 w0绕其轴转动,空气的阻力矩与角速度成正比,比例系数𝐶为一常量。转动部分对其轴的转动惯量为𝐼,问:(1)经过多长时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?
解:
(1)
转动定律:
−
C
w
=
I
β
-Cw=I\beta
−Cw=Iβ
所以: β = − C w I = d w d t \beta = -\frac{Cw}{I} =\frac{dw}{dt} β=−ICw=dtdw
∫ w 0 w d w d t = ∫ 0 t − C I d t \int_{w_0}^{w}\frac{dw}{dt} = \int_0^{t}-\frac{C}{I}dt ∫w0wdtdw=∫0t−ICdt
得到: w = w 0 e − C I t w = w_0e^{-\frac{C}{I}t} w=w0e−ICt
当 w = w 0 2 w = \frac{w_0}{2} w=2w0,那么 t = I C l n 2 t=\frac{I}{C}ln2 t=CIln2
(2)
w
=
d
θ
d
t
w = \frac{d\theta}{dt}
w=dtdθ
∫
0
θ
d
θ
=
∫
0
t
w
0
e
−
C
I
t
d
t
\int_0^\theta d\theta =\int_0^t{w_0}e^{-\frac{C}{I}t}dt
∫0θdθ=∫0tw0e−ICtdt
θ = I w 0 2 C \theta = \frac{Iw_0}{2C} θ=2CIw0
转过的圈数: θ 2 π \frac{\theta}{2\pi} 2πθ
7. 刚体转动的功能定理
力矩的功: d A = M d θ dA = Md\theta dA=Mdθ
根据定轴的转动定律: M = I β = I d w d t M = I\beta = I \frac{dw}{dt} M=Iβ=Idtdw
角动量守恒定理: ∫ M d t = I w ⃗ − I 0 w 0 ⃗ \int M dt=I\vec{w}-I_0\vec{w_0} ∫Mdt=Iw−I0w0
内力矩不改变系统的角动量。
定轴运动和直线运动的对比:
例题:一半径为𝑅的光滑圆环置于竖直平面内。一质量为𝑚的小球穿在圆环上,并可在圆环上滑动。小球开始时静止于圆环上的点𝐴(该点在通过环心𝑂的水平面上),然后从𝐴点开始下滑。设小球与圆环间的摩擦略去不计。求小球滑到点𝐵时对环心𝑂的角动量和角速度。
解:
重力矩:
M
=
m
g
R
c
o
s
θ
M = mgRcos\theta
M=mgRcosθ
质点的角动量定理:
m
g
R
c
o
s
θ
=
d
L
d
t
mgRcos\theta = \frac{dL}{dt}
mgRcosθ=dtdL
所以: d L = m g R c o s θ d t dL = mgRcos\theta dt dL=mgRcosθdt
已知: w = d θ d t w=\frac{d\theta}{dt} w=dtdθ
L = R m v = m R 2 w L = Rmv =mR^2w L=Rmv=mR2w
得到: L d L = m 2 g R 3 c o s θ d θ LdL=m^2gR^3cos\theta d\theta LdL=m2gR3cosθdθ
积分上式中:
∫
0
L
L
d
L
=
m
2
g
R
3
∫
0
θ
c
o
s
θ
d
θ
\int_0^LLdL=m^2gR^3\int_0^{\theta}cos\theta d\theta
∫0LLdL=m2gR3∫0θcosθdθ
得到: L = m R 2 3 ( 2 g s i n θ ) 1 2 L = mR^{\frac{2}{3}}(2gsin\theta)^{\frac{1}{2}} L=mR32(2gsinθ)21
得到: w = L m R 2 = ( 2 g R s i n θ ) 1 2 w = \frac{L}{mR^2} = (\frac{2g}{R}sin\theta)^{\frac{1}{2}} w=mR2L=(R2gsinθ)21
电学
1. 静电场
电荷守恒定律:在一个没有外界电荷交换的系统内,正负电荷的代数和在屋里过程中保持不变
库伦定律: f = 1 4 π ε q 1 q 2 r 2 f = \frac{1}{4\pi \varepsilon} \frac{q_1q_2}{r^2} f=4πε1r2q1q2
电场强度:电场中某点的电场强度的大小等于单位电荷在该点受力的大小,其方向为正电荷在该点受力的方向。
E ⃗ = F ⃗ q \vec{E}=\frac{\vec{F}}{q} E=qF
综合上式子,我们可以知道: E ⃗ = Q 4 π ε 0 r 2 \vec{E}=\frac{Q}{4\pi \varepsilon_0 r^2} E=4πε0r2Q
需要注意的是,当 r → 0 r\rightarrow 0 r→0的时候,点电荷的场强公式将会不成立。
场强叠加原理: E ⃗ = ∫ d E ⃗ = ∫ Q 1 4 π ε 0 d q r 2 r ^ \vec{E}=\int d\vec{E}=\int_Q \frac{1}{4\pi \varepsilon_0} \frac{dq}{r^2} \hat{r} E=∫dE=∫Q4πε01r2dqr^
电通量:通过任意面元的电场线的数量 通过这个面元的电通量。
ϕ e = ∫ s d ϕ e = ∫ s E ⃗ d S ⃗ \phi_e=\int_sd\phi_e = \int_s \vec{E} d\vec{S} ϕe=∫sdϕe=∫sEdS
高斯定理:真空中的静电场中,穿过任何一闭合曲面𝑆的电通量𝜙𝑒,等于该曲面所包围的电荷的代数和的𝜀0分之一倍。
ϕ e = ∮ s E ⃗ d s ⃗ = 1 ε 0 ∑ q i \phi_e = \oint_s \vec{E}d\vec{s} = \frac{1}{\varepsilon_0} \sum q_i ϕe=∮sEds=ε01∑qi
这个闭合的曲面我们叫做高斯面
高斯定理的相关:
【1】高斯定理中的场强全部是由全部电荷产生的
【2】电通量只决定他所包含的电荷,对于闭合曲面外的电荷对电通量没有贡献
【3】高斯面上各点的电场强度为零时,穿过高斯面的电通量一定为零,同时电荷的代数和为0,但不代表没有电荷
【4】场强是高斯面内外电荷产生的合场强
高斯定理使用于电荷分布具有空间对称性的情况:
【1】均匀无限长带电圆柱面的电场
【2】均匀带电球面的电场
【3】均匀带电球体的电场
【4】均匀带电无限大平面的电场
【5】均匀带电球体空腔部分的电场
例题:有一边长为𝑎的正方形平面,其中垂线上距正方形中心𝑂点为𝑎/2处有一电量为𝑞的正点电荷,则通过该正方形平面的电通量为?
解:
∮ s E ⃗ d S ⃗ = q ε 0 \oint_s \vec{E}d\vec{S} = \frac{q}{\varepsilon_0} ∮sEdS=ε0q
6个面,所以最后的电通量是 q 6 ε 0 \frac{q}{6\varepsilon_0} 6ε0q
例题:在真空中,𝐴 、𝐵两板相距𝑑,面积都为𝑆(平板的尺寸远大于两板间距),𝐴 、𝐵两板各带+𝑞 、−𝑞。则两板间的相互作用力为?
解:
E = q 2 ε 0 S E = \frac{q}{2\varepsilon_0S} E=2ε0Sq
F = E q F = Eq F=Eq
F = q 2 2 ε 0 S F = \frac{q^2}{2\varepsilon_0S} F=2ε0Sq2
我们需要区分是(板间)还是(板上)
例题:求两个平行无限大均匀带电平面的(间)场强分布。设面电荷密度分别为 σ 1 = + σ \sigma_1 =+\sigma σ1=+σ和 σ 2 = − σ \sigma_2 = -\sigma σ2=−σ
解:
E c = E + + E − = 2 ∗ σ 2 ε 0 E_c = E_{+}+E_{-} = 2 * \frac{\sigma}{2\varepsilon_0} Ec=E++E−=2∗2ε0σ
例题:一半径为𝑅的带电球体,其体电荷密度 ρ = K r 2 \rho = Kr^2 ρ=Kr2,𝐾为正常量,𝑟为球心到球内一点的距离,求此带电球体所产生的场强分布
解:取球面作为高斯面:
ϕ
e
=
∮
s
E
⃗
d
S
⃗
=
q
ε
0
\phi_e = \oint_s \vec{E}d\vec{S} = \frac{q}{\varepsilon_0}
ϕe=∮sEdS=ε0q
讨论:
【1】当 r > = R r>=R r>=R:
q = ∫ V ρ d V = ∫ 0 R k r 2 4 π r 2 d r = 4 5 k π R 5 q = \int_V \rho dV = \int_0^R kr^24\pi r^2 dr = \frac{4}{5}k \pi R^5 q=∫VρdV=∫0Rkr24πr2dr=54kπR5
E = ϕ e 4 = K R 5 5 ε 0 r 2 E = \frac{\phi_e}{4}=\frac{KR^5}{5\varepsilon_0r^2} E=4ϕe=5ε0r2KR5
【2】当 r < R r<R r<R:
q = ∫ V ρ d V = ∫ 0 r k r 2 4 π r 2 d r = 4 5 k π r 5 q = \int_V \rho dV = \int_0^r kr^24\pi r^2 dr = \frac{4}{5}k \pi r^5 q=∫VρdV=∫0rkr24πr2dr=54kπr5
E = ϕ e 4 = K r 3 5 ε 0 E = \frac{\phi_e}{4}=\frac{Kr^3}{5\varepsilon_0} E=4ϕe=5ε0Kr3
半径为𝑅的均匀带电球面(电荷面密度𝜎)外的电场:
解: E ⃗ = σ R 2 ε 0 r 3 r ˉ \vec{E} = \frac{\sigma R^2}{\varepsilon_0 r^3}\bar{r} E=ε0r3σR2rˉ
静电场力是保守力:静电场力所做的功和路径无关
静电场环路定理:在静电场中,场强沿任意闭合路径的线积分等于零
运动电荷不是保守场,而是非保守场
电势能和电场力做功:
A a b = ∫ a b q 0 E ⃗ d l ⃗ = E p a − E p b A_{ab} = \int_{ab}q_0 \vec{E} d \vec{l} = E_{pa} - E_{pb} Aab=∫abq0Edl=Epa−Epb
电势差: U a b = A a b q 0 = E p a q 0 − E p b q 0 = U a − U b = ∫ a b E ⃗ d l ⃗ U_{ab} = \frac{A_{ab}}{q_0}=\frac{E_{pa}}{q_0}-\frac{E_{pb}}{q_0}=U_a-U_b =\int_a^b\vec{E} d\vec{l} Uab=q0Aab=q0Epa−q0Epb=Ua−Ub=∫abEdl
A a b = q 0 ∫ a b E d l = q 0 ( U a − U b ) A_{ab} = q_0\int_a^bEdl =q_0(U_a-U_b) Aab=q0∫abEdl=q0(Ua−Ub)
点电荷的电势: U p = q 4 π ε r U_p=\frac{q}{4 \pi \varepsilon r} Up=4πεrq
例题:一带电量为𝑄、半径为𝑅的均匀带电球体,求电势分布。
解:
我们先求场强分布:(根据高斯定理,然后分类讨论)
【1】r<R: E 内 = Q r 4 π ε R 3 r ^ E_{内} = \frac{Qr}{4\pi \varepsilon R^3}\hat{r} E内=4πεR3Qrr^
【2】r>=R: E 外 = Q 4 π ε r 2 r ^ E_{外} = \frac{Q}{4\pi \varepsilon r^2}\hat{r} E外=4πεr2Qr^
(无限远作为零势能点)计算电势:
U = ∫ P ∞ E d l U = \int^{\infty}_PEdl U=∫P∞Edl
【1】球内电势: U p = ∫ r R E 内 d l + ∫ R ∞ E 外 d l = Q 8 π ε R 3 ( 3 R 2 − r 2 ) U_p = \int_r^{R}E_{内}dl+\int_R^{\infty}E_{外}dl=\frac{Q}{8\pi \varepsilon R^3}(3R^2-r^2) Up=∫rRE内dl+∫R∞E外dl=8πεR3Q(3R2−r2)
【2】球外电势: U p = ∫ r ∞ Q 4 π ε 0 r 2 d r = Q 4 π ε r U_p = \int_r^{\infty}\frac{Q}{4\pi \varepsilon_0 r^2}dr=\frac{Q}{4\pi \varepsilon r} Up=∫r∞4πε0r2Qdr=4πεrQ
(取球心作为零势能参考点)计算电势:
U
=
∫
P
0
E
d
l
U = \int^{0}_PEdl
U=∫P0Edl
【1】球内电势: U p = ∫ p 0 E d l = ∫ r 0 E 内 d l = ∫ r 0 Q r 4 π ε 0 R 3 d r = − Q r 2 8 π ε R 3 U_p = \int_p^0Edl=\int_r^0E_{内}dl=\int_r^0\frac{Qr}{4\pi \varepsilon_0 R^3}dr = - \frac{Qr^2}{8\pi \varepsilon R^3} Up=∫p0Edl=∫r0E内dl=∫r04πε0R3Qrdr=−8πεR3Qr2
【2】球外电势: U p = ∫ r R E 外 d l + ∫ R 0 E 内 d l = − Q ( 3 r − 2 R ) 8 π ε R r U_p = \int_r^RE_{外}dl+\int_R^0E_{内}dl=-\frac{Q(3r-2R)}{8\pi \varepsilon Rr} Up=∫rRE外dl+∫R0E内dl=−8πεRrQ(3r−2R)
例题:计算均匀带电球面的电势
先求场强:
【1】球内:E=0
【2】球外:
E
=
q
4
π
ε
r
2
r
^
E = \frac{q}{4 \pi \varepsilon r^2}\hat{r}
E=4πεr2qr^
默认零势能点在无限远的地方:
场点在球面内: U p = ∫ p ∞ E d l = ∫ r R 0 d l + ∫ R ∞ q 4 π ε r 2 = q 4 π ε R U_p = \int_p^{\infty}Edl = \int_r^R0dl+\int_R^{\infty}\frac{q}{4\pi \varepsilon r^2} = \frac{q}{4 \pi \varepsilon R} Up=∫p∞Edl=∫rR0dl+∫R∞4πεr2q=4πεRq
场点在球面外:
U
p
=
∫
p
∞
E
d
l
=
∫
r
∞
q
4
π
ε
r
2
d
r
=
q
4
π
ε
r
U_p = \int_p^{\infty} Edl = \int_r^{\infty}\frac{q}{4 \pi \varepsilon r^2}dr = \frac{q}{4 \pi \varepsilon r}
Up=∫p∞Edl=∫r∞4πεr2qdr=4πεrq
平行板的电势差: Δ U = E d \Delta U = Ed ΔU=Ed
例题:求一均匀带电细圆环轴线上任一点的电场强度
解:
U
=
q
4
π
ε
x
2
+
R
2
U = \frac{q}{4 \pi \varepsilon \sqrt{x^2+R^2}}
U=4πεx2+R2q
E = − ∂ U ∂ x E = -\frac{\partial U}{\partial x} E=−∂x∂U
例题:一球壳半径为𝑅,带电量𝑞,在离球心𝑂为𝑟(𝑟 < 𝑅) 处一点的电势为(设“无限远”处为电势零点)
解:这是球面问题: q 4 π ε R \frac{q}{4\pi \varepsilon R} 4πεRq
例题:在点电荷+2𝑞的电场中,如果取图中𝑃点处为电势零点,则𝑀点的电势为?
解:
U
=
∫
−
a
+
a
E
d
l
U= \int_{-a}^{+a}Edl
U=∫−a+aEdl
E
=
2
q
4
π
ε
(
2
a
)
2
E = \frac{2q}{4 \pi \varepsilon (2a)^2}
E=4πε(2a)22q
所以:
−
q
4
π
ε
a
-\frac{q}{4\pi\varepsilon a}
−4πεaq
例题:两个均匀带电同心球面,半径分别为𝑅1和𝑅2,所带电量分别为𝑄1和𝑄2,设无穷远处为电势零点,则距球心𝑟的𝑃点(𝑅1 < 𝑟 < 𝑅2)电势为?
解:
这是个球面问题,因此,对于Q1而言,r在球面外,因由有 Q 1 4 π ε r \frac{Q1}{4 \pi \varepsilon r} 4πεrQ1,对于Q2而言是在球面内,因此有: Q 2 4 π ε R 2 \frac{Q_2}{4 \pi \varepsilon R_2} 4πεR2Q2
Q 1 4 π ε r + Q 2 4 π ε R 2 \frac{Q_1}{4 \pi \varepsilon r}+\frac{Q_2}{4 \pi \varepsilon R_2} 4πεrQ1+4πεR2Q2
以下都正确:
- 电势处处相等的区域,场强一定为零
- 电势在某一区域内为常量,则电场强度在该区域必定为零
- 场强的方向总是从高电势指向低电势
- 场强不变的空间,电势不一定处处为零