斐波那契数列
题目一:求斐波那契数列的第n项
写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。斐波那契数列定义如下:
斐波那契数列大家比较熟悉,因为很多教材上都拿它来举例子说明递归的用法。一般而言,根据函数数列定义,教材会给出以下代码:
long long Fibonacci(unsigned int n)
{
if(n<=0) return 0;
if(n==1) return 1;
return Fibonacci(n-1)+Fibonacci(n-2);
}
但如果面试这样回答,基本被怼效率严重过低。
所以我们需要想办法,提高效率。先找出效率低的原因。假设我们计算f(10),那么递归求解过程如下(不完整):
可以看到,这颗树中有很多结点是重复的,也就是我们其实计算了很多重复的东西,所以效率才如此低下。
因此我们可以从下往上计算,也就是现根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)…依次类推就可以算出第n项了。
代码:
long long Fibonacci(unsigned n)
{
int result={0,1}; //f(0) f(1)
if(n<2) return result[n];
long long fibNminusOne=1;
long long fibNminusTwo=0;
long long fibN=0;
for(unsigned int i=2;i<=n;i++)
{
fibN=fibNminusOne+fibNminusTwo; //f(n-1)+f(n-2)
fibNminusTwo=fibNminusOne;
fibNminusOne=fibN;
}
return fibN;
}
————————————————————————————————————————————
斐波那契数列问题有很多变形,我们可以看以下问题
题目二:青蛙跳台阶问题 一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法。
咋一看似乎很复杂,我们可以先从简单的例子来分析。
如果只有一级台阶,那显然只有一种跳法。如果是两级台阶,那就是两种跳法:一种是分两次跳,每次跳1级;还有一种是一次跳2级
接下来看一般情况,我们把n级台阶的跳法看做是函数f(n)。当n>2,第一次跳的时候就有两种不同的选择:一是第一次只跳一级,此时跳法等于后面n-1级台阶的跳法数目,即f(n-1);二是第一次跳2级,此时跳法数目等于后面剩下的n-2级台阶的跳法数目,即f(n-2)。所以不同跳法总数为f(n)=f(n-1)+f(n-2)。实际上就是一个斐波那契数列。
————————————————————————————————————————————
参考书籍:《剑指offer 第二版》