51、经典时间序列分析方法详解

经典时间序列分析方法详解

1. ARIMAX模型

经典的ARIMA模型仅基于特定预测变量的过去值对单变量结果进行预测,它假设结果的未来值线性依赖于其先前值的影响和一些随机成分的加性表示。而扩展的或外生特征的时间序列模型(ARIMAX)则允许基于多个独立(预测)变量对单变量结果进行预测。这类似于从简单线性回归过渡到多元线性模型,ARIMAX对ARIMA模型进行了推广,考虑了线性回归残差中的自相关性,以提高时间序列预测的准确性。ARIMAX模型也称为动态回归模型,它是ARIMA、回归和单输入单输出传递函数模型的组合。

当没有协变量时,传统时间序列$y_1, y_2, \cdots, y_n$可以用ARMA( p, q)模型建模:
[y_t = \phi_1y_{t - 1} + \phi_2y_{t - 2} + \cdots + \phi_py_{t - p} - \theta_1E_{t - 1} + \theta_2E_{t - 2} + \cdots + \theta_qE_{t - q} + E_t]
其中$E_t \sim N(0, 1)$是白高斯噪声。

扩展的动态时间序列模型ARIMAX在右侧添加了协变量:
[y_t = \sum_{k = 1}^{K} \beta_kx_{k,t} + \phi_1y_{t - 1} + \phi_2y_{t - 2} + \cdots + \phi_py_{t - p} - \theta_1E_{t - 1} + \theta_2E_{t - 2} + \cdots + \theta_qz_{t - q} + E_t]
其中$x_{k, t}$是第$k$个协变量在时间$t$的值,$\beta_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值