【sklearn学习】linear regression & logistic regression

本文深入探讨了sklearn库中的线性回归、多项式回归和逻辑回归。线性回归用于连续变量预测,多项式回归通过引入特征交互增强模型能力,逻辑回归则适用于分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

linear regression

from sklearn.linear_model import LinearRegression # 导入线性回归模型
model = LinearRegression() # 定义模型
model.fit(X_train, y_train) # 训练模型
print("输出参数w:",model.coef_) # 输出模型参数w
print("输出参数b:",model.intercept_) # 输出参数b

polynomial regression

np.random.seed(0)
n_samples = 30  # 设置随机种子

X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1
polynomial_features = PolynomialFeatures(degree=degrees[i],
                                          include_bias=True
                                          # ,interaction_only=True
                                          )

linear_regression = LinearRegression()
pipeline = Pipeline([("polynomial_features", polynomial_features),
                      ("linear_regression", linear_regression)])  # 使用pipline串联模型
pipeline.fit(X[:, np.newaxis], y)
print(polynomial_features.get_feature_names())
scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="neg_mean_squared_error", cv=10)  # 使用交叉验证

logistic regression

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# solver:即使用的优化器,lbfgs:拟牛顿法, sag:随机梯度下降
model = LogisticRegression(solver='lbfgs', max_iter=1000) # lbfgs:拟牛顿法
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred)) # 打印报告

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值