基础dp学习

引入

有这样一个问题:楼梯有N阶,可以一步上1阶,也可以上2阶,问N阶楼梯有多少种走法
题目链接 洛谷P1225

  • 如果用搜索的方法,每次有两种方法,那么增长速度是指数级的,时间复杂度很大
  • 那么可以这样考虑,如何才能走到第N阶楼梯呢?,只能从第N-1阶上1阶或者从第N-2阶上2阶得到,也就是说dp[N]=dp[N-1]+dp[N-2],这其实是一种动态规划(Dynamic Programming,DP)的思想,把一个大问题分解成许多小问题,通过求解小问题得到大问题的解,所得到的方程就是动态规划的状态转移方程,那么对于这道题编写程序如下

这道题后面答案比较大,需要高精度处理,为了规避这个不必要的麻烦,使用python

n = int(input())
dp = list()
dp.append(0)
dp.append(1)
dp.append(2)
for i in range(3, n + 1):
    dp.append(dp[i - 1] + dp[i - 2])
print(dp[n])
  • 通过上面的问题,我们对于动态规划有了初步的认识,接下来深入研究一下

硬币找零问题

  • 这也是一种动态规划的问题,比如有N块钱,现在有5种不同面值的硬币,分别为1, 5, 10 ,25, 50,问找零方案有多少种
  • 其实通过上面楼梯问题可以感觉到,硬币找零是一种变相的楼梯问题,可以通过递推得到答案,比如开始的时候是1块钱,那么1块钱只有一种方案,那么1块钱可以转移到2,6,11,26,51块钱,方案数都是相对于1块钱时+1,那么可以编写程序如下
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iomanip>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e5+100;
int Data[MAXN];
int coins[5] = {1, 5, 10, 25, 50};
int dp[MAXN];
int main(){
    int n;
    cin>>n;
    dp[0] = 1;
    for(int i=0;i<5;i++){
        for(int j=coins[i];j<=n;j++){
            dp[j] += dp[j - coins[i]];
        }
    }
    cout<<dp[n];
    return 0;
}

hdu2069
这道题就是上个问题的加强版,现在加了一个条件,硬币数量现在有限,问方案数

  • 再用上面的程序就是不对的,因为上面程序适用于硬币数量无限的情况,因为它太简略了,中间的信息都没有记录下来,现在使用一个二维数组来dp,第一维含义是钱数,第二维是硬币数,与上一程序区别是dp的过程中少一个硬币,数组第二维-1,打表
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iomanip>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e5+100;
int Data[MAXN];
int coins[5] = {1, 5, 10, 25, 50};
int dp[1000][1000];
int main(){
    int n;
    dp[0][0] = 1;
    for(int i=0;i<5;i++){
        for(int j=1;j<=100;j++){
            for(int k=coins[i];k<=250;k++){
                dp[k][j] += dp[k - coins[i]][j - 1];
            }
        }
    }
    for(int i=0;i<=100;i++){
        for(int j=0;j<=250;j++){
            Data[j] += dp[j][i];
        }
    }
    while(cin>>n) cout<<Data[n]<<endl;
    return 0;
}

0-1背包

  • 这是最经典的dp问题,每个物品有自身价值,物品有体积,背包有容积,每个物品最多只能选择一次,问最多装多少价值的物品。一般背包问题是对于可切分的物体而言的,这种问题用贪心求解,按单位价值排序;01背包指的是类似于吃自助餐的场景,肚子容量有限,自助餐只能一份一份吃,不能分开,这个时候就需要考虑怎么吃能使得吃到肚子里的东西价值最大
    题目链接
    这个问题是01背包模板题,使用二维数组dp记录价值,第一维表示装第几个商品,第二维表示背包容量,那么dp[i][j]等于多少取决于b[i]和j之间的关系,如果b[i]>j,那么只能放弃第i个商品,也就是dp[i][j]=dp[i-1][j];否则,可以装第i个商品,也可以不装,如果装,dp[i][j]=dp[i-1][j-b[i]]+b[i],意思是背包容量减小,价值增加,如果不装,那么和上一种情况相同
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iomanip>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e5+100;
int Data[MAXN];
int dp[1005][1005];
int a[MAXN],b[MAXN];
int main(){
    int t,n,v;
    cin>>t;
    while(t--){
        cin>>n>>v;
        for(int i=1;i<=n;i++) cin>>a[i];
        for(int i=1;i<=n;i++) cin>>b[i];
        for(int i=1;i<=n;i++){
            for(int j=0;j<=v;j++){
                if(j < b[i]) dp[i][j] = dp[i-1][j];
                else{
                    dp[i][j] = max(dp[i-1][j], dp[i-1][j-b[i]]+a[i]);
                }
            }
        }
        cout<<dp[n][v]<<endl;
    }
    return 0;
}

骨头体积可能为0,j要从0开始

滚动数组

  • 这样使用数组是很占空间的,想办法优化空间复杂度,发现dp过程中是根据二维dp数组上一行推导下一行的,而且是从左往右,所以考虑使用一维数组,在推导的时候从后往前推导防止错误覆盖(如果正序相当于每一件物品可以选择多次),将上一题改成滚动数组如下
int dp[1005];
int a[MAXN],b[MAXN];
int main(){
    int t,n,v;
    cin>>t;
    while(t--){
        cin>>n>>v;
        memset(dp, 0, sizeof dp);
        for(int i=1;i<=n;i++) cin>>a[i];
        for(int i=1;i<=n;i++) cin>>b[i];
        for(int i=1;i<=n;i++){
            for(int j=v;j>=b[i];j--){
                dp[j] = max(dp[j], dp[j - b[i]] + a[i]);
            }
        }
        cout<<dp[v]<<endl;
    }
    return 0;
}

完全背包

  • 此问题和 0 − 1 0-1 01背包的区别在于物品可以选择无限次,那么我们可以通过枚举第 i i i件物品有多少件,即 d p [ i ] [ j ] = m a x k = 0 ∞ ( d p [ i − 1 ] [ j − k × w i ] + v i × k ) dp[i][j]=max_{k=0}^{\infty}(dp[i-1][j-k\times w_i]+v_i\times k) dp[i][j]=maxk=0(dp[i1][jk×wi]+vi×k)
  • 实际上 d p [ i ] [ j ] dp[i][j] dp[i][j]只需要从 d p [ i − 1 ] [ j − w i ] dp[i-1][j-w_i] dp[i1][jwi]转移过来即可,可以发现和 0 − 1 0-1 01背包类似,有 d p [ i ] [ j ] = m a x k = 0 ∞ ( d p [ i − 1 ] [ j − w i ] + v i ) dp[i][j]=max_{k=0}^{\infty}(dp[i-1][j-w_i]+v_i) dp[i][j]=maxk=0(dp[i1][jwi]+vi)
    https://www.luogu.com.cn/problem/P1616
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int main(){
  ios::sync_with_stdio(false);
  cin.tie(0);
  cout.tie(0);
  int n, m;
  cin >> n >> m;
  vector<pair<int, ll> > a(m + 1);
  for(int i=1;i<=m;i++){
    cin >> a[i].first >> a[i].second;
  }
  vector<vector<ll> > dp(m + 1, vector<ll>(n + 1));
  for(int i=1;i<=m;i++){
    for(int j=0;j<=n;j++){
      dp[i][j] = dp[i - 1][j];// 注意这里必须要继承上一个状态
      if(a[i].first <= j){
        dp[i][j] = max(dp[i - 1][j], dp[i][j - a[i].first] + a[i].second);
      }
    }
  }
  cout << dp[m][n] << '\n';
  return 0;
}

滚动数组

  • 因为转移是从此物品的第 k − 1 k-1 k1个转移过来的,物品可以多次选择,所以需要正序枚举
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int main(){
  ios::sync_with_stdio(false);
  cin.tie(0);
  cout.tie(0);
  int n, m;
  cin >> n >> m;
  vector<pair<int, ll> > a(m + 1);
  for(int i=1;i<=m;i++){
    cin >> a[i].first >> a[i].second;
  }
  vector<ll> dp(n + 1);
  for(int i=1;i<=m;i++){
    for(int j=a[i].first;j<=n;j++){
      dp[j] = max(dp[j - a[i].first] + a[i].second, dp[j]);
    }
  }
  cout << dp[n] << '\n';
  return 0;
}

多重背包

https://www.acwing.com/problem/content/4/

  • 这个问题和 0 − 1 0-1 01背包的区别是物品分类,每一类物品最多有若干个,其余相同。如果数据范围很小,可以直接转化为 0 − 1 0-1 01背包。就是把若干个相同物品当作独立的。
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int main(){
  ios::sync_with_stdio(false);
  cin.tie(0);
  cout.tie(0);
  int n, V;
  cin >> n >> V;
  vector<int> s(n + 1), v(n + 1), w(n + 1);
  for(int i=1;i<=n;i++){
    cin >> v[i] >> w[i] >> s[i];
  }
  vector<vector<int> > dp(n + 1, vector<int>(V + 1));
  for(int i=1;i<=n;i++){
    for(int j=0;j<=V;j++){
      for(int k=0;k<=s[i] && j >= v[i] * k;k++){
        dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i] * k] + k * w[i]);
      }
    }
  }
  cout << dp[n][V];
  return 0;
}
  • 二进制优化的思路是我们把每一个物品分成 1 , 2 , 4 , 8 , . . . 2 k 1,2,4,8,...2^k 1,2,4,8,...2k这样若干份,使得枚举的 k k k大大减少,达到 O ( n V l o g k ) O(nVlogk) O(nVlogk),这种思路的原理在于任何一个 > 1 >1 >1的自然数都能够拆成 2 2 2的幂次的形式。
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int main(){
  ios::sync_with_stdio(false);
  cin.tie(0);
  cout.tie(0);
  int n, V;
  cin >> n >> V;
  vector<int> v, w;
  vector<int> dp(V + 1);
  for(int i=1;i<=n;i++){
    int a, b, c;
    cin >> a >> b >> c;
    int cnt = 1;
    while(cnt <= c){
      v.push_back(a * cnt);
      w.push_back(b * cnt);
      c -= cnt;
      cnt <<= 1;
    }
    if(c > 0){
      v.push_back(a * c);
      w.push_back(b * c);
    }
  }
  for(int i=0;i<(int)v.size();i++){
    for(int j=V;j>=v[i];j--){
      dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
    }
  }
  cout << dp[V] << '\n';
  return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clarence Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值