研究随机问题时,基本都要用到抽样仿真,比较仿真结果与实验结果的偏差。
设随机变量的均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2,则 n n n 个样本的均值为 μ \mu μ,方差为 σ 2 n \frac{\sigma^2}{n} nσ2。
在给定的置信水平
1
−
α
1-\alpha
1−α 下, 设样本的均值为
X
‾
\overline{X}
X,其误差
ε
\varepsilon
ε 由下列计算公式得出:
ε
=
∣
X
‾
−
μ
∣
\varepsilon=|\overline{X}-\mu|
ε=∣X−μ∣
1. 若 σ \sigma σ 已知
由于中心极限定理,大量样本服从正态分布,样本的标准差为
σ
/
n
\sigma/\sqrt{n}
σ/n,根据正态分布概率的计算公式,
Φ
(
∣
X
‾
−
μ
∣
σ
/
n
)
=
α
/
2
\Phi(\frac{|\overline{X}-\mu |}{\sigma/\sqrt{n}})=\alpha/2
Φ(σ/n∣X−μ∣)=α/2
因此,
ε
=
∣
X
‾
−
μ
∣
=
Z
α
/
2
σ
n
\varepsilon=|\overline{X}-\mu|=Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}
ε=∣X−μ∣=Zα/2nσ
可以推出样本容量
n
n
n 的计算公式为:
n
=
Z
α
/
2
2
σ
2
ε
2
n=\frac{Z_{\alpha/2}^2\sigma^2}{\varepsilon^2}
n=ε2Zα/22σ2
2. 若 σ \sigma σ 未知
大部分情况下 σ \sigma σ 是未知的,为了消除 σ \sigma σ 的影响,有学者引入了 t t t 分布,
t = X ‾ − μ S / n t=\frac{\overline{X}-\mu}{S/\sqrt{n}} t=S/nX−μ
上面这个表达式为 自由度为
n
−
1
n-1
n−1 的
t
t
t 分布,其中
S
S
S 为样本方差,则
ε
=
∣
X
‾
−
μ
∣
=
t
α
(
n
−
1
)
S
n
\varepsilon=|\overline{X}-\mu|=t_{\alpha}(n-1)\frac{S}{\sqrt{n}}
ε=∣X−μ∣=tα(n−1)nS
得到
n
n
n 的计算公式为:
n
=
t
α
2
(
n
−
1
)
S
2
ε
2
n=\frac{t^2_{\alpha}(n-1)S^2}{\varepsilon^2}
n=ε2tα2(n−1)S2
在样本容量
n
>
30
n>30
n>30 时,置信水平
α
<
0.05
\alpha<0.05
α<0.05时,一般可以近似采用下面的计算公式:
n
=
4
S
2
ε
2
n=\frac{4S^2}{\varepsilon^2}
n=ε24S2
若样本容量实在很小,则采用 “试差法” 确定 n n n.
参考资料:
- https://en.wikipedia.org/wiki/Student%27s_t-distribution
- https://wenku.baidu.com/view/45a2dab5f605cc1755270722192e453610665bef.htmlrec_flag=default&sxts=1531916030126