怎样确定样本容量的理论解释

本文探讨了在随机问题研究中使用抽样仿真方法来评估实验误差的过程。介绍了当总体方差已知和未知时样本均值误差的计算方法,并给出了样本容量的计算公式。此外还讨论了在不同条件下如何选择合适的统计分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

研究随机问题时,基本都要用到抽样仿真,比较仿真结果与实验结果的偏差。

设随机变量的均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2,则 n n n 个样本的均值为 μ \mu μ,方差为 σ 2 n \frac{\sigma^2}{n} nσ2

在给定的置信水平 1 − α 1-\alpha 1α 下, 设样本的均值为 X ‾ \overline{X} X,其误差 ε \varepsilon ε 由下列计算公式得出:
ε = ∣ X ‾ − μ ∣ \varepsilon=|\overline{X}-\mu| ε=Xμ

1. 若 σ \sigma σ 已知

由于中心极限定理,大量样本服从正态分布,样本的标准差为 σ / n \sigma/\sqrt{n} σ/n ,根据正态分布概率的计算公式,
Φ ( ∣ X ‾ − μ ∣ σ / n ) = α / 2 \Phi(\frac{|\overline{X}-\mu |}{\sigma/\sqrt{n}})=\alpha/2 Φ(σ/n Xμ)=α/2
因此,
ε = ∣ X ‾ − μ ∣ = Z α / 2 σ n \varepsilon=|\overline{X}-\mu|=Z_{\alpha/2}\frac{\sigma}{\sqrt{n}} ε=Xμ=Zα/2n σ

可以推出样本容量 n n n 的计算公式为:
n = Z α / 2 2 σ 2 ε 2 n=\frac{Z_{\alpha/2}^2\sigma^2}{\varepsilon^2} n=ε2Zα/22σ2

2. 若 σ \sigma σ 未知

大部分情况下 σ \sigma σ 是未知的,为了消除 σ \sigma σ 的影响,有学者引入了 t t t 分布,

t = X ‾ − μ S / n t=\frac{\overline{X}-\mu}{S/\sqrt{n}} t=S/n Xμ

上面这个表达式为 自由度为 n − 1 n-1 n1 t t t 分布,其中 S S S 为样本方差,则
ε = ∣ X ‾ − μ ∣ = t α ( n − 1 ) S n \varepsilon=|\overline{X}-\mu|=t_{\alpha}(n-1)\frac{S}{\sqrt{n}} ε=Xμ=tα(n1)n S

得到 n n n 的计算公式为:
n = t α 2 ( n − 1 ) S 2 ε 2 n=\frac{t^2_{\alpha}(n-1)S^2}{\varepsilon^2} n=ε2tα2(n1)S2

在样本容量 n > 30 n>30 n>30 时,置信水平 α < 0.05 \alpha<0.05 α<0.05时,一般可以近似采用下面的计算公式:
n = 4 S 2 ε 2 n=\frac{4S^2}{\varepsilon^2} n=ε24S2

若样本容量实在很小,则采用 “试差法” 确定 n n n.

参考资料:

  1. https://en.wikipedia.org/wiki/Student%27s_t-distribution
  2. https://wenku.baidu.com/view/45a2dab5f605cc1755270722192e453610665bef.htmlrec_flag=default&sxts=1531916030126
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值