HDU-1010(DFS+奇偶剪枝)

3 篇文章 0 订阅

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1010


思路:
题目思路很清晰,一眼能看出用DFS来做,难点在于如果不剪枝就会超时。
这题对我来说最大的收获就是了解了奇偶剪枝。


奇偶剪枝理解:
在一个矩阵中,设起点为(a, b),终点为(c, d)。则最短路min为abs(a-c)+abs(b-d),
画图总结规律可以得出任意一条路径x,x-min必定为偶数。
我自己对这种思想抽象理解为,若有1步不走在最短路上,则必定还需要1步走回最短路,因此必定多出2步。


下面贴出AC代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int n, m, t, flag = 0, vis[10][10];
char maze[10][10];

void dfs(int i, int j, int cur){
    if (flag||cur > t) return;
    if (maze[i][j] == 'X'||maze[i][j] == '#') return;
    if (cur < t&&maze[i][j] == 'D') return;
    if (cur == t&&maze[i][j] == 'D'){
        flag = 1;
        return;
    }
    else{
        if (!vis[i][j]){
        vis[i][j] = 1;
        dfs(i+1, j, cur+1);
        dfs(i-1, j, cur+1);
        dfs(i, j+1, cur+1);
        dfs(i, j-1, cur+1);
        vis[i][j] = 0;
        }
    }
}

int main()
{
    //freopen("E://input.txt", "r", stdin);
    while(cin>>n>>m>>t){
        if(!n&&!m&&!t) break;
        for (int i = 0; i < 10; i++)
            for (int j = 0; j < 10; j++)
                maze[i][j] = '#';
        int sx, sy, dx, dy, cnt = 0;
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= m; j++){
                cin>>maze[i][j];
                if (maze[i][j] == 'S'){
                    sx = i;
                    sy = j;
                }
                if (maze[i][j] == 'D'){
                    dx = i;
                    dy = j;
                }
                if (maze[i][j] == 'X') cnt++;
            }
        /*可走步数小于t必然不行*/
        if (m*n - cnt < t){
            cout<<"NO"<<endl;
            continue;
        }
        /*奇偶剪枝*/
        int minsum = abs(sx-dx)+abs(sy-dy);
        if ((t - minsum)%2 != 0){
            cout<<"NO"<<endl;
            continue;
        }
        dfs(sx, sy, 0);
        if (flag) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
        flag = 0;
        memset(maze, 0, sizeof(maze));
        memset(vis, 0, sizeof(vis));
    }

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值