题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010
思路:
题目思路很清晰,一眼能看出用DFS来做,难点在于如果不剪枝就会超时。
这题对我来说最大的收获就是了解了奇偶剪枝。
奇偶剪枝理解:
在一个矩阵中,设起点为(a, b),终点为(c, d)。则最短路min为abs(a-c)+abs(b-d),
画图总结规律可以得出任意一条路径x,x-min必定为偶数。
我自己对这种思想抽象理解为,若有1步不走在最短路上,则必定还需要1步走回最短路,因此必定多出2步。
下面贴出AC代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
int n, m, t, flag = 0, vis[10][10];
char maze[10][10];
void dfs(int i, int j, int cur){
if (flag||cur > t) return;
if (maze[i][j] == 'X'||maze[i][j] == '#') return;
if (cur < t&&maze[i][j] == 'D') return;
if (cur == t&&maze[i][j] == 'D'){
flag = 1;
return;
}
else{
if (!vis[i][j]){
vis[i][j] = 1;
dfs(i+1, j, cur+1);
dfs(i-1, j, cur+1);
dfs(i, j+1, cur+1);
dfs(i, j-1, cur+1);
vis[i][j] = 0;
}
}
}
int main()
{
//freopen("E://input.txt", "r", stdin);
while(cin>>n>>m>>t){
if(!n&&!m&&!t) break;
for (int i = 0; i < 10; i++)
for (int j = 0; j < 10; j++)
maze[i][j] = '#';
int sx, sy, dx, dy, cnt = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++){
cin>>maze[i][j];
if (maze[i][j] == 'S'){
sx = i;
sy = j;
}
if (maze[i][j] == 'D'){
dx = i;
dy = j;
}
if (maze[i][j] == 'X') cnt++;
}
/*可走步数小于t必然不行*/
if (m*n - cnt < t){
cout<<"NO"<<endl;
continue;
}
/*奇偶剪枝*/
int minsum = abs(sx-dx)+abs(sy-dy);
if ((t - minsum)%2 != 0){
cout<<"NO"<<endl;
continue;
}
dfs(sx, sy, 0);
if (flag) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
flag = 0;
memset(maze, 0, sizeof(maze));
memset(vis, 0, sizeof(vis));
}
return 0;
}