在图神经网络(GNN)上进行关系推理的新架构

       开发能够学习推理的模型是一个众所周知的具有挑战性的问题,在这个领域中,使用图神经网络(GNNs)似乎是一个自然的选择。然而,以往关于使用GNNs进行推理的工作表明,当这些模型面对需要比训练时更长推理链的测试样本时,它们往往会失败。这表明GNNs缺乏以系统化的方式从训练样本中泛化出推理规则的能力,这将根本性地限制它们的推理能力。

       一个常见的解决方案是转而依赖神经符号方法,这些方法由于其设计,能够以系统化的方式进行推理。然而,这些方法的可扩展性通常受到限制,并且它们倾向于依赖过于强烈的假设,例如,假设通过检查单一关系路径就能回答问题。

     本文重新审视了使用GNNs进行推理的想法,展示了只要提供正确的归纳偏差,系统泛化是可能的基于此提出了一种新的 GNN 架构,将节点嵌入视为知识状态,并利用前向和反向模型来模拟所有可能的组合顺序,从而实现系统推理

1 学习推理的现状

1.1 神经网络推理研究现状

  • 基于前馈模型: 例如,知识图谱嵌入方法将实体和关系嵌入到低维空间,以便进行推理。
  • 基于循环模型: 例如,循环神经网络 (RNN) 可以处理序列数据,并用于推理实体之间的关系。
  • 基于 GNN: 例如,图卷积网络 (GCN) 可以有效地学习图结构中的节点表示,并用于推理实体之间的关系。

1.2 GNN 在推理任务中的局限性

  • 缺乏系统泛化能力: GNN 模型通常只能处理训练数据中出现的推理链,难以泛化到训练数据以外的任务。
  • 局部信息传递: GNN 模型通过局部信息传递来更新节点表示,这可能导致节点表示“过载”,即包含来自所有路径的信息。
  • 顺序处理关系路径: GNN 模型只能顺序处理关系路径,难以处理需要组合多个关系路径的推理任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值