论文链接:图神经网络应用于知识图谱推理的研究综述
一、知识推理研究进展
(1)知识图谱以节点和边的图结构存储数据,GNN可以有效整合知识图谱结构特征及属性特征,通过节点的领域信息聚合并更新节点,利用其强大的信息传播能力学习数据间的语义关系和潜在信息,使其可以很好地学习知识推理中的节点信息、节点间关系信息以及全局结构信息。
(2)知识推理:根据初步构建的知识图谱中实体和关系所蕴含的信心,利用相关算法,推理出知识图谱中缺失的实体或缺失的关系。
实体预测:利用已有事实的关系及一个实体,推理出另一个实体并由此构成完整三元组。
关系预测:推理给定的头尾实体之间的关系。
(3)知识推理从结构上分为局部任务和全局任务。
局部任务:节点分类、链接预测、知识补全......
全局任务:子图匹配、子图分类、图趋势预测......
(4)知识推理方法
1.基于逻辑规则的推理
基本思想:借鉴传统知识推理中的规则推理方法,在知识图谱上运用简单规则或统计特征进行推理。
2.基于表示学习的推理
基本思想:找到一种映射函数,将语义网络中的实体、关系和属性映射到低维实值向量空间以获得分布式表示,进而捕获实体和关系之间的隐式关联。
3.基于神经网络的推理
基本思想:将前文所述的表示学习方法通过多个非线性表示层组合起来,再对其深度特征进行表示,进而开展知识推理。
4.基于图神经网络的推理
基本思想:通过图卷积的方式来聚合相邻节点的信息(包括语义信息和结构信息),得到节点表示进行推理。
二、基于图神经网络的知识推理研究
(1)图神经网络模型
输入层:将图形结构和节点内容信息作为输入。
图卷积层:通过聚合相邻节点的特征信息得到每个节点的隐藏表示。
激活函数层:通过激活函数层进行非线性交换,得到新的图的表示。
输出层:通过多次图卷积层和激活函数层,将得到每个节点的最终表示作为输出。
训练框架:可以在端到端学习框架内以(半)监督或无监督的方式训练,具体取决于学习任务和可用的标签信息。
执行任务:知识推理的节点分类、节点标签预测等节点级任务。
(2)基于图神经网络的KR模型(边级任务)
输出层:将GNN中两个节点的隐藏表示作为输出。
执行任务:可利用相似性函数或神经网络来预测边的标签或连接强度等,执行边分类和链接预测等任务。
(3)基于图神经网络的知识推理模型(全局任务)