洛谷 P7774 KUTEVI 题解

写这篇题解花了我很多不少时间,希望能过 awa


题意:

m m m 个数,这 m m m 个数能否由另外 n n n 个数通过加减运算获得。

对于每一次加减的操作,结果不能小于 0 0 0(角度不能小于 0 0 0);
对于大于等于 360 360 360 的结果,对 360 360 360 取模。(大于 36 0 ∘ 360^{\circ} 360 的角会转一圈后继续转)

能则输出 YES ,不能则输出 NO 。

思路:

dp \texttt{dp} dp(背包)、搜索都可以。dp 太难想 这里我只讲搜索。

对于每一个状态,只有加和减两种状态。所以只需要对每一个状态枚举每一个数的加或减。

记录已经过状态,枚举中遇到了要获得的数,就表明可以实现。枚举结束后还没有遇到,则不能实现。

实现:

对于状态 x x x

拓展 ( x ± a [ i ] )   m o d   360 (x\pm a[i]) \bmod 360 (x±a[i])mod360 x ± a [ i ] ≥ 0 x\pm a[i]\ge0 x±a[i]0 且未被拓展过。

上代码!

#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[11],b;
bool vis[361];

bool bfs(int end)
{
	memset(vis,0,sizeof(vis));
	queue<int> q;
	q.push(0);
	vis[0]=true;
	while(!q.empty())
	{
		int t=q.front();q.pop();
		if(t==end)
		{
			return true;
		}
		for(int i=1;i<=n;i++)
		{
			int cg=(t+a[i])%360;
			if(cg>=0&&(!vis[cg]))
			{
				vis[cg]=true;
				q.push(cg);
			}  //可以不枚举减法,文后给出证明过程
			/*cg=(t-a[i])%360;  
			if(cg>=0&&(!vis[cg]))
			{
				vis[cg]=true;
				q.push(cg);
			}*/
		}
	}
	return false;
}

int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++) cin>>a[i];
	for(int i=1;i<=m;i++)
	{
		cin>>b;
		if(bfs(b)) puts("YES");
		else puts("NO");
	}
	return 0;
}

完结。


对于可以不枚举 x − a x-a xa 的证明:

对于任意正整数 x x x a a a k k k p p p,证明:

( x + a k )   m o d   360 = x − a p (x+ak) \bmod 360 = x-ap (x+ak)mod360=xap

x x x 指某一状态。意思就是,只用加 k k k a a a 就可以枚举到 x − a p x-ap xap

原式可转化为: 360 t + x − a p = x + a k 360t+x-ap=x+ak 360t+xap=x+ak t t t 为任意正整数。

化简,得: 360 t = a ( p + k ) 360t=a(p+k) 360t=a(p+k)

所以,只需证明 a ( p + k ) a(p+k) a(p+k) 恒为 360 360 360 倍数。

a a a 360 360 360 倍数,得证;

a a a 不为 360 360 360 倍数,

则若使 ( p + k ) (p+k) (p+k) 360 360 360 倍数, k = 360 − p k=360-p k=360p 即可。

又有 x − a p ≥ 0 x-ap\ge0 xap0,则 p ≤ x a < 360 p\le \frac{x}{a}<360 pax<360

k k k 在满足 k = 360 − p k=360-p k=360p 的条件下满足 k > 0 k>0 k>0,所以无论 p p p 取多少都能满足 ( p + k ) (p+k) (p+k) 360 360 360 倍数。得证。

综上, ( x + a k )   m o d   360 = x − a p (x+ak) \bmod 360 = x-ap (x+ak)mod360=xap


第一次自己写 OI 证明题,有不对或不完善的地方请指出,谢谢qaq;

被打回x4 – 求过!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值