写这篇题解花了我很多不少时间,希望能过 awa
题意:
有 m m m 个数,这 m m m 个数能否由另外 n n n 个数通过加减运算获得。
对于每一次加减的操作,结果不能小于
0
0
0(角度不能小于
0
0
0);
对于大于等于
360
360
360 的结果,对
360
360
360 取模。(大于
36
0
∘
360^{\circ}
360∘ 的角会转一圈后继续转)
能则输出 YES ,不能则输出 NO 。
思路:
dp
\texttt{dp}
dp(背包)、搜索都可以。dp 太难想 这里我只讲搜索。
对于每一个状态,只有加和减两种状态。所以只需要对每一个状态枚举每一个数的加或减。
记录已经过状态,枚举中遇到了要获得的数,就表明可以实现。枚举结束后还没有遇到,则不能实现。
实现:
对于状态 x x x ,
拓展 ( x ± a [ i ] ) m o d 360 (x\pm a[i]) \bmod 360 (x±a[i])mod360 且 x ± a [ i ] ≥ 0 x\pm a[i]\ge0 x±a[i]≥0 且未被拓展过。
上代码!
#include<bits/stdc++.h>
using namespace std;
int n,m;
int a[11],b;
bool vis[361];
bool bfs(int end)
{
memset(vis,0,sizeof(vis));
queue<int> q;
q.push(0);
vis[0]=true;
while(!q.empty())
{
int t=q.front();q.pop();
if(t==end)
{
return true;
}
for(int i=1;i<=n;i++)
{
int cg=(t+a[i])%360;
if(cg>=0&&(!vis[cg]))
{
vis[cg]=true;
q.push(cg);
} //可以不枚举减法,文后给出证明过程
/*cg=(t-a[i])%360;
if(cg>=0&&(!vis[cg]))
{
vis[cg]=true;
q.push(cg);
}*/
}
}
return false;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=m;i++)
{
cin>>b;
if(bfs(b)) puts("YES");
else puts("NO");
}
return 0;
}
完结。
对于可以不枚举 x − a x-a x−a 的证明:
对于任意正整数 x x x, a a a, k k k, p p p,证明:
( x + a k ) m o d 360 = x − a p (x+ak) \bmod 360 = x-ap (x+ak)mod360=x−ap。
x x x 指某一状态。意思就是,只用加 k k k 次 a a a 就可以枚举到 x − a p x-ap x−ap。
原式可转化为: 360 t + x − a p = x + a k 360t+x-ap=x+ak 360t+x−ap=x+ak, t t t 为任意正整数。
化简,得: 360 t = a ( p + k ) 360t=a(p+k) 360t=a(p+k)。
所以,只需证明 a ( p + k ) a(p+k) a(p+k) 恒为 360 360 360 倍数。
若 a a a 为 360 360 360 倍数,得证;
若 a a a 不为 360 360 360 倍数,
则若使 ( p + k ) (p+k) (p+k) 为 360 360 360 倍数, k = 360 − p k=360-p k=360−p 即可。
又有 x − a p ≥ 0 x-ap\ge0 x−ap≥0,则 p ≤ x a < 360 p\le \frac{x}{a}<360 p≤ax<360。
则 k k k 在满足 k = 360 − p k=360-p k=360−p 的条件下满足 k > 0 k>0 k>0,所以无论 p p p 取多少都能满足 ( p + k ) (p+k) (p+k) 为 360 360 360 倍数。得证。
综上, ( x + a k ) m o d 360 = x − a p (x+ak) \bmod 360 = x-ap (x+ak)mod360=x−ap。
第一次自己写 OI 证明题,有不对或不完善的地方请指出,谢谢qaq;
被打回x4 – 求过!