textFile函数
-
-
-
-
- def textFile(
- path: String,
- minPartitions: Int = defaultMinPartitions): RDD[String] = withScope {
- assertNotStopped()
- hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
- minPartitions).map(pair => pair._2.toString).setName(path)
- }
分析参数:
path: String 是一个URI,這个URI可以是HDFS、本地文件(全部的节点都可以),或者其他Hadoop支持的文件系统URI返回的是一个字符串类型的RDD,也就是是RDD的内部形式是Iterator[(String)]
minPartitions= math.min(defaultParallelism, 2) 是指定数据的分区,如果不指定分区,当你的核数大于2的时候,不指定分区数那么就是 2
当你的数据大于128M时候,Spark是为每一个快(block)创建一个分片(hadoop-2.X之后为128m一个block)
1、从当前目录读取一个文件
- val path = "Current.txt"
- val rdd1 = sc.textFile(path,2)
从当前目录读取一个Current.txt的文件
2、从当前目录读取多个文件
- val path = "Current1.txt,Current2.txt,"
- val rdd1 = sc.textFile(path,2)
从当前读取两个文件,分别是Cuttent1.txt和Current2.txt
3、从本地系统读取一个文件
- val path = "file:///usr/local/spark/spark-1.6.0-bin-hadoop2.6/README.md" //local file
- val rdd1 = sc.textFile(path,2)
从本地系统读取一个文件,名字是README.md
4、从本地系统读取整个文件夹
- val path = "file:///usr/local/spark/spark-1.6.0-bin-hadoop2.6/licenses/" //local file
- val rdd1 = sc.textFile(path,2)
从本地系统中读取licenses这个文件夹下的所有文件
這里特别注意的是,比如這个文件夹下有35个文件,上面分区数设置是2,那么整个RDD的分区数是35*2?
這是错误的,這个RDD的分区数不管你的partition数设置为多少时,只要license這个文件夹下的這个文件a.txt
(比如有a.txt)没有超过128m,那么a.txt就只有一个partition。那么就是说只要这35个文件其中没有一个超过
128m,那么分区数就是 35个
5、从本地系统读取多个文件
- val path = "file:///usr/local/spark/spark-1.6.0-bin-hadoop2.6/licenses/LICENSE-scala.txt,file:///usr/local/spark/spark-1.6.0-bin-hadoop2.6/licenses/LICENSE-spire.txt" //local file
- val rdd1 = sc.textFile(path,2)
从本地系统中读取file:///usr/local/spark/spark-1.6.0-bin-hadoop2.6/licenses/下的LICENSE-spire.txt和
LICENSE-Scala.txt两个文件。上面分区设置是2,那个RDD的整个分区数是2*2
6、从本地系统读取多个文件夹下的文件(把如下文件全部读取进来)
- val path = "/usr/local/spark/spark-1.6.0-bin-hadoop2.6/data/*/*"
- val rdd1 = sc.textFile(path,2)
采用通配符的形式来代替文件,来对数据文件夹进行整体读取。但是后面设置的分区数2也是可以去除的。因为一个文件没有达到128m,所以上面的一个文件一个partition,一共是20个。
7、采用通配符,来读取多个文件名类似的文件
比如读取如下文件的people1.txt和people2.txt,但google.txt不读取
- for (i <- 1 to 2){
- val rdd1 = sc.textFile(s"/root/application/temp/people$i*",2)
- }
8、采用通配符读取相同后缀的文件
- val path = "/usr/local/spark/spark-1.6.0-bin-hadoop2.6/data/*/*.txt"
- val rdd1 = sc.textFile(path,2)
9、从HDFS读取一个文件
- val path = "hdfs://master:9000/examples/examples/src/main/resources/people.txt"
- val rdd1 = sc.textFile(path,2)
从HDFS中读取文件的形式和本地上一样,只是前面的路径要表明是HDFS中的