原文链接:https://blog.csdn.net/u013381011/article/details/78341861
- colormap(色度图)
假设我们想在地图上显示美国不同地区的温度。我们可以把美国地图上的温度数据叠加为灰度图像——较暗的区域代表较冷的温度,更明亮的区域代表较热的区域。这样的表现不仅令人难以置信,而且代表了两个重要的原因。首先,人类视觉系统没有被优化来测量灰度强度的微小变化。我们能更好地感知颜色的变化。第二,我们用不同的颜色代表不同的意思。用蓝色和较温暖的温度用红色表示较冷的温度更有意义。
温度数据只是一个例子,但还有其他几个数据是单值(灰度)的情况,但将其转换为彩色数据以实现可视化是有意义的。用伪彩色更好地显示数据的其他例子是高度、压力、密度、湿度等等。 - 在OpenCV中使用applycolormap(伪彩色函数)
OpenCV的定义12种colormap(色度图),可以应用于灰度图像,使用函数applycolormap产生伪彩色图像。让我们很快看到如何将色度图的一种模式colormap_jet应用到一幅图像中。 import cv2 im_gray = cv2.imread("pluto.jpg", cv2.IMREAD_GRAYSCALE) im_color = cv2.applyColorMap(im_gray, cv2.COLORMAP_JET)
下图显示了一个关于colormap(色度图)的视觉表示和COLORMAP_*的数值,左边的颜色模式表示较低的灰度值,右边的则表示较高的灰度值。
Value Name Scale 0 COLORMAP_AUTUMN 1 COLORMAP_BONE 2 COLORMAP_JET 3 COLORMAP_WINTER 4 COLORMAP_RAINBOW 5 COLORMAP_OCEAN 6 COLORMAP_SUMMER 7 COLORMAP_SPRING 8 COLORMAP_COOL 9 COLORMAP_HSV 10 COLORMAP_PINK 11 COLORMAP_HOT