粗糙集理论介绍(二)

粗糙集理论是数据挖掘的重要工具,用于决策和维度约简。它涉及属性重要性、依赖度、属性约简及决策规则的定义。属性约简旨在去除冗余和不重要的属性,保持决策系统的有效性。决策规则描述了对象的决策逻辑。通过属性约简和决策规则,粗糙集理论能帮助简化复杂数据,提高决策效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

粗糙集理论的简单应用

粗糙集理论常用于数据挖掘领域中的决策以及维度约简。下面稍微介绍一下:

属性的重要性、属性约简和核

设有决策系统 S = ( U , C ∪ D , V , f ) S=(U,C\cup D,V,f) S=(U,CD,V,f),则决策属性D在条件属性C下的正域(简称D的C正域)定义为:
在这里插入图片描述
D的C正域是中通过用分类U/C表达的知识能够准确的划入U/D
类的对象的对象集合,

决策属性D对条件属性C的依赖都定义为:
在这里插入图片描述
依赖度表示在条件属性集下能够准确切划入决策分类U/D的对象占论域中的总队形数的比率,表达了决策属性对条件属性的的依赖程度。

属性子集 C ′ ∈ C C'\in C CC的属性重要程度定义为:
在这里插入图片描述
特别的,当 C ′ = { a } C'=\{a\} C={a}时,属性 a ∈ C a\in C aC关于D的重要性为:
在这里插入图片描述

属性约简

定义:在保持决策表条件属性和决策属性的前提下,删除其中不相关或者不重要的属性。

定义:对于一个给定的决策系统, S = ( U , C ∪ D , V , f ) S=(U,C\cup D,V,f) S=(U,CD,V,f),如果 P O S C ( D ) POS_C(D) POSC(D)= P O S C − a ( D ) POS_{C-a}(D) POSCa(D),则称属性a为C中D可省略,否则属性a为C中D不可省略。

定义:对于一个给定的决策系统,条件属性集c的D约简时c的一个非空子集P,如果满足
(1)任意 a ∈ P a\in P aP a a a都是D不可省略的
(2) P O S P ( D ) POS_P(D) POSP(D)= P O S C ( D ) POS_C(D) POSC(D)
则称P是C的一个约简。
C中所有的约简记 R E D D ( C ) RED_D(C) REDD(C),C中所有不可省略属性的集合称之为C的核,记为 C O R E D ( C ) CORE_D(C) CORED(C)

决策规则和算法

决策表中的每一个对象都可以看作是一条决策规则。因此,决策表实际上是一组逻辑组合规则。
定义:在逻辑决策语言中,蕴含 θ \theta θ ϕ \phi ϕ称为决策逻语言中的决策规则, θ \theta θ ϕ \phi ϕ分别称为决策规则的前件和后件。
(后面概念很多,这里不详述了,具体见如下ppt)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算例分析:

对于如下信息系统(决策表):
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值