Iam_Rocky
用於收藏文章和記錄,以便日後查找方便。部分文章來自網絡,如侵權請告知刪除
展开
-
圖像識別算法研究(1)---二值化概述
我們遇到的識別圖片,經常被認為的加入雜色干擾,形成一個濃淡分布不均的多值圖像。把這樣一幅多灰度值的圖像(Gray Level Image)轉化為只有黑(前景文字部分)白(背景部分)分布的二值圖像(Binary Image)的工作叫做二值化處理(Binariztion)。對於一般256級灰度的灰度圖,0級灰度對應於黑色,255級對應於白色。二值化後0對應於黑色前景文字,1對應於白色背景。转载 2012-02-07 10:13:46 · 2344 阅读 · 0 评论 -
雙重閥值(Dual thresholding)
雙重閥值(Dual thresholding):當灰階影像要轉換為二元黑白影像,對於影像的各個像素,先確定兩個灰階值T1與T2(臨界值),當像素灰階值 >= T1 &转载 2012-09-18 07:52:10 · 1466 阅读 · 0 评论 -
IMAGEJ中幾種自動閾值的比較
http://www.cnblogs.com/pixels/archive/2011/01/14/1935600.html從ImageJ中挑選了三種閾值的計算方法,下圖是運行結果。可以看出均值的方法獲得的二值結果較差。 下面是源代碼(改自ImageJ中的Java代碼,其中給出的參考文獻,有興趣的可以看一下)代碼#include "std转载 2012-09-29 20:26:48 · 2903 阅读 · 0 评论 -
Niblack算法的快速實現技巧
http://blog.csdn.net/ieogxw/article/details/3871750 在許多文本圖像的預處理過程中, 二值化過程是至為關鍵的一個環節。二值化算法的效果會對後續的處理如版面分析,字符定位以及識別等產生決定性的影響。 二值化的算法有很多,大體分為兩類: 全局閾值算法(如otsu算法)和局部閾值算法(如niblack)。而在汗牛转载 2012-07-29 22:09:21 · 1921 阅读 · 0 评论 -
最小交叉熵圖像分割(Minimum cross entropy thresholding)
http://blog.csdn.net/likezhaobin/article/details/6937569本文是Li和Lee關於一維最小交叉熵圖像閾值分割的原文。這裡進行了簡單翻譯,有不足的地方請大家一起討論完善。後續有文章對信息熵學進行初窺,敬請期待。摘要:通過最小化圖像與其部分區域之間的交叉熵解決了圖像分割中的閾值選取問題。其中交叉熵基於兩幅圖像之間的转载 2012-08-05 09:25:01 · 4250 阅读 · 0 评论 -
Adaptive Thresholding
http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htmAdaptive ThresholdingCommon Names: Adaptive thresholding, Dynamic thresholdingBrief DescriptionThresholding is used to segment a转载 2012-08-04 00:01:24 · 2609 阅读 · 0 评论 -
Thresholding
http://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htmThresholdingCommon Names: Threshold, Density slicingBrief DescriptionIn many vision applications, it is useful to be able to sep转载 2012-08-03 23:20:24 · 1372 阅读 · 0 评论 -
圖像分割閾值選取技術綜述
http://blog.csdn.net/ywywcy/article/details/1704566圖像分割閾值選取技術綜述中科院成都計算所 劉平 2004-2-26摘要 圖像分割是圖像處理與計算機視覺領域低層次視覺中最為基礎和重要的領域之一,它是對圖像進行視覺分析和模式識別的基本前提.閾值法是一種傳統的圖像分割方法,因其實現簡單、計算量小、性能較穩定而成為圖像分割中最基本和转载 2012-02-14 22:43:36 · 1684 阅读 · 0 评论 -
Wellner 1993快速自適應的圖像二值化方法的提高 (Derek Bradley and Gerhard Roth 2007)
Wellner 1993快速自適應的圖像二值化方法的提高 (Derek Bradley and Gerhard Roth 2007)前面一種方案實際上還是存在一定的問題的, 就是這個避重就輕的初始g(n)值127*s(127表示0-255之間的中間值), 這個東西帶來的最直接的問題就是邊緣的效果在這個算法下是不咋地的。 其實從這個所謂的"Wellner 1993", 後人又做了很多的改進, 使转载 2012-02-07 10:08:26 · 1408 阅读 · 0 评论 -
圖像識別算法研究(2)---二值化基本概念
1. 閾值 對 |-- 1 ; F(i,j) >= t 時 Ft(i,j) = |-- 0 ; F(i,j) 中, t 稱為二值化的閾值 2转载 2012-02-07 10:14:19 · 1304 阅读 · 0 评论 -
一種快速自適應的圖像二值化方法介紹 (Wellner 1993)
一種快速自適應的圖像二值化方法介紹 (Wellner 1993)在手機模式識別的時候, 我們首先viewfinder裡面拿到的frame通常是RGB的或者YUV的, 如果我們需要用來做模式識別的話, 通常需要首先把彩色圖首先轉化成灰度圖. 對於RGB圖像而言, 網上有充足的公式, 比如Y = 0.299R + 0.587G + 0.114B 等等. 如果是YUV的話, 直接用Y就是灰度圖了.转载 2012-02-07 10:12:50 · 2013 阅读 · 0 评论 -
幾種經典的二值化方法及其vb.net實現
圖像二值化的目的是最大限度的將圖象中感興趣的部分保留下來,在很多情況下,也是進行圖像分析、特征提取與模式識別之前的必要的圖像預處理過程。這個看似簡單的問題,在過去的四十年裡受到國內外學者的廣泛關注,產生了數以百計的閾值選取方法,但如同其他圖像分割算法一樣,沒有一個現有方法對各種各樣的圖像都能得到令人滿意的結果。本文針對幾種經典而常用的二值發放進行了簡單的討論並給出了其vb.net 實現。转载 2012-02-07 10:15:23 · 3864 阅读 · 0 评论 -
單一閥值(Single thresholding)
單一閥值(Single thresholding):當灰階影像要轉換為二元黑白影像,對於影像的各個像素,先確定某個灰階值T(臨界值),當像素灰階值 > T,則對應輸出影像的像素值設為1(白色),當像素灰階值转载 2012-09-18 07:52:36 · 974 阅读 · 0 评论