瑞瑞的木板
题目背景
瑞瑞想要亲自修复在他的一个小牧场周围的围栏。
题目描述
他测量栅栏并发现他需要 n n n 根木板,每根的长度为整数 l i l_i li。于是,他买了一根足够长的木板,长度为所需的 n n n 根木板的长度的总和,他决定将这根木板切成所需的 n n n 根木板(瑞瑞在切割木板时不会产生木屑,不需考虑切割时损耗的长度)。
瑞瑞切割木板时使用的是一种特殊的方式,这种方式在将一根长度为 x x x 的木板切为两根时,需要消耗 x x x 个单位的能量。瑞瑞拥有无尽的能量,但现在提倡节约能量,所以作为榜样,他决定尽可能节约能量。显然,总共需要切割 ( n − 1 ) (n-1) (n−1) 次,问题是,每次应该怎么切呢?请编程计算最少需要消耗的能量总和。
输入格式
输入的第一行是整数,表示所需木板的数量 n n n。
第 2 2 2 到第 ( n + 1 ) (n + 1) (n+1) 行,每行一个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 l i l_i li 代表第 i i i 根木板的长度 l i l_i li。
输出格式
一个整数,表示最少需要消耗的能量总和。
样例 #1
样例输入 #1
3
8
5
8
样例输出 #1
34
提示
输入输出样例 1 解释
将长度为 21 21 21 的木板,第一次切割为长度为 8 8 8 和长度为 13 13 13 的,消耗 21 21 21 个单位的能量,第二次将长度为 13 13 13 的木板切割为长度为 5 5 5 和 8 8 8 的,消耗 13 13 13 个单位的能量,共消耗 34 34 34 个单位的能量,是消耗能量最小的方案。
数据规模与约定
- 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 2 × 1 0 4 1\le n \le 2 \times 10^4 1≤n≤2×104, 1 ≤ l i ≤ 5 × 1 0 4 1 \leq l_i \leq 5 \times 10^4 1≤li≤5×104。
Scratch实现
后续
接下来我会不断用scratch来实现信奥比赛中的算法题、Scratch考级编程题实现、白名单赛事考题实现,感兴趣的请关注,我后续将继续分享相关内容