[语言月赛 202402] 分配工资
题目描述
经过小 A 和卷王的一番忙活,公开赛通过了审核。比赛顺利的结束后,她们领到了一笔 m m m 元的工资。现在她们遇到了一个棘手的问题:工资怎么分呢?
公开赛有 n n n 道题,第 i i i 道题的出题人是 a i a_i ai。 a i a_i ai 为 1 1 1 表示卷王,为 2 2 2 表示小 A。
在谷洛的工资分发规则里,一道题的出题人会获得这道题的所有工资。每道题有一个工资权重 b i b_i bi,也就是说,各个题能获得的工资比例是 b 1 : b 2 : b 3 ⋯ : b n − 1 : b n b_1:b_2:b_3\dots :b_{n-1}:b_n b1:b2:b3⋯:bn−1:bn。
现在,卷王想知道,按照如上的方法计算自己获得的工资,她会分到多少工资?
提示:建议结合样例解释理解题意。
输入格式
第一行两个整数 n , m n,m n,m,表示比赛的题量以及小 A 和卷王获得的工资。
接下来 n n n 行,每行两个整数 a i , b i a_i,b_i ai,bi,分别表示第 i i i 道题的出题人和工资权重。
输出格式
一行一个小数,表示卷王获得的工资,保留小数点后 3 3 3 位。
样例 #1
样例输入 #1
4 1000
1 1
2 1
2 2
1 6
样例输出 #1
700.000
样例 #2
样例输入 #2
3 1000
1 3
1 30
2 300
样例输出 #2
99.099
提示
样例 1 解释
这场比赛有 4 4 4 道题,小 A 和卷王共获得了 1000 1000 1000 元,各个题获得的工资的比是 1 : 1 : 2 : 6 1:1:2:6 1:1:2:6。由此可知, 4 4 4 道题的工资分别为 1000 × 1 1 + 1 + 2 + 6 = 100 1000 \times \frac{1}{1 + 1 + 2 + 6} = 100 1000×1+1+2+61=100 元、 1000 × 1 1 + 1 + 2 + 6 = 100 1000 \times \frac{1}{1 + 1 + 2 + 6} = 100 1000×1+1+2+61=100 元、 1000 × 2 1 + 1 + 2 + 6 = 200 1000 \times \frac{2}{1 + 1 + 2 + 6} = 200 1000×1+1+2+62=200 元、 1000 × 6 1 + 1 + 2 + 6 = 600 1000 \times \frac{6}{1 + 1 + 2 + 6} = 600 1000×1+1+2+66=600 元。卷王出了第 1 1 1 题和第 4 4 4 题,所以她会获得 100 + 600 = 700 100+600=700 100+600=700 元。
数据规模与约定
- 对于 20 % 20\% 20% 的数据,满足 a i = 2 a_i=2 ai=2。
- 对于 100 % 100\% 100% 的数据,满足 2 ≤ n ≤ 1 0 6 2\leq n\leq 10^6 2≤n≤106, 1 ≤ m ≤ 1 0 9 1\leq m\leq 10^9 1≤m≤109, 1 ≤ a i ≤ 2 1\le a_i\le 2 1≤ai≤2, 1 ≤ b i ≤ 1 0 3 1\leq b_i\leq 10^3 1≤bi≤103。
Scrach实现
后续
接下来我会不断用scratch来实现信奥比赛中的算法题、Scratch考级编程题实现、白名单赛事考题实现,感兴趣的请关注,我后续将继续分享相关内容