题意:让你求最小生成树是否唯一。
分析:很明显是求次小生成树,一般算法可以是暴力枚举删边再求最小生成树,我的方法就是枚举加边成环,然后在环上进行删边操作。
附代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 105;
struct Node
{
int u,v,next,w;
}e[maxn*100];
int head[maxn],pa[maxn],num;
int mark[maxn*maxn];
void add(int a,int b,int c)
{
e[num].u=a;
e[num].v=b;
e[num].w=c;
e[num].next=head[a];
head[a]=num++;
}
bool cmp(Node a,Node b)
{
return a.w<b.w;
}
void init(int n)
{
for(int i=1;i<=n;i++)
{
pa[i]=i;
}
}
int Find(int x)
{
if(x!=pa[x])
pa[x]=Find(pa[x]);
return pa[x];
}
void Union(int x,int y)
{
int a=Find(x);
int b=Find(y);
pa[a]=b;
}
int vis[maxn];
int ans_tot,sum_tot;
bool dfs(int u,int go,int val)
{
if(u==go) return true;
for(int i=head[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
int w=e[i].w;
if(!mark[i]) continue;
if(!vis[v])
{
vis[v]=1;
if(dfs(v,go,val))
{
ans_tot=max(ans_tot,w);
return true;
}
}
}
return false;
}
int main()
{
int n,m,T;
scanf("%d",&T);
while(T--)
{
scanf("%d %d",&n,&m);
init(n);
memset(head,-1,sizeof(head));
num=0;
for(int i=0;i<m;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
sort(e,e+num,cmp);
sum_tot=0;
memset(mark,0,sizeof(mark));
for(int i=0;i<num;i++)
{
//printf("%d ",e[i].w);
int u=e[i].u;
int v=e[i].v;
if(Find(u)!=Find(v))
{
sum_tot+=e[i].w;
Union(u,v);
mark[i]=1;
}
}
//printf("~~~~~~\n");
ans_tot=-1;
int ans=0x3f3f3f3f;
for(int i=0;i<num;i++)
{
int u=e[i].u;
int v=e[i].v;
int w=e[i].w;
if(!mark[i])
{
//mark[i]=1;
memset(vis,0,sizeof(vis));
vis[u]=1;
if(dfs(u,v,w))
{
ans=min(sum_tot-ans_tot+w,ans);
}
}
}
if(ans==sum_tot)
printf("Not Unique!\n");
else
printf("%d\n",sum_tot);
}
}
/*
9
3 3
1 2 2
2 3 3
3 1 3
3 3
1 2 3
2 3 2
3 1 3
3 2
1 2 2
2 3 2
*/