1
00:00:01,510 --> 00:00:03,900
练习,我们就出这一道就行了
2
00:00:04,230 --> 00:00:07,210
这些都是像数理逻辑
3
00:00:08,140 --> 00:00:10,570
包括信息专业的
4
00:00:11,350 --> 00:00:12,900
包括文科的
5
00:00:12,910 --> 00:00:14,260
这都是通用的
6
00:00:14,920 --> 00:00:16,590
大把的题,到处都是
7
00:00:16,600 --> 00:00:18,830
大家网上都可以找到各种各样的教材
8
00:00:19,120 --> 00:00:20,690
9
00:00:20,780 --> 00:00:21,850
都是一样的
10
00:00:22,190 --> 00:00:23,530
可能用的符号有点区别
11
00:00:23,540 --> 00:00:25,280
但实际上背后道理都一样的
12
00:00:26,250 --> 00:00:30,270
用刚才我们讲的,一个是推理
13
00:00:31,190 --> 00:00:33,790
一个是推理,一个是变换
14
00:00:35,820 --> 00:00:39,790
刚才我们讲的那几个,推理的
15
00:00:41,080 --> 00:00:42,270
第2个就是变换
16
00:00:42,720 --> 00:00:45,850
包括前面的那个式子
17
00:00:45,860 --> 00:00:49,040
就是这个,可以把推理
18
00:00:49,050 --> 00:00:52,750
转成与或这种运算
19
00:00:54,920 --> 00:00:56,830
一个推理一个变换
20
00:00:57,490 --> 00:00:59,630
把它形式换一下
21
00:01:02,350 --> 00:01:05,300
也就是说,我们计算这些式子
22
00:01:05,810 --> 00:01:08,950
看哪些得出来结果为真的
23
00:01:09,860 --> 00:01:10,380
那就是真的
24
00:01:10,390 --> 00:01:14,130
如果得出来结果不知道是真是假的
25
00:01:14,920 --> 00:01:20,620
随着PQ的取值变化的,肯定不对了
26
00:01:21,300 --> 00:01:24,730
重言式或者叫永真式
27
00:01:24,740 --> 00:01:28,210
就是说不管PQR这些什么之类的
28
00:01:28,220 --> 00:01:29,050
取什么值
29
00:01:29,880 --> 00:01:31,200
这个结果永远都是真的
30
00:01:31,210 --> 00:01:33,760
这个式子永远都是为真的
31
00:01:35,210 --> 00:01:38,730
所以就需要我们一个个去算一下
32
00:01:40,930 --> 00:01:41,820
哪些是重言式
33
00:01:42,520 --> 00:01:44,100
当然有些是可以看出来的
34
00:01:44,110 --> 00:01:48,570
比如说,像这个
35
00:01:50,770 --> 00:01:54,270
如果P那么Q,而且如果Q那么R
36
00:01:54,280 --> 00:01:58,960
那么推理P到R,这个是直觉上可以看出来
37
00:01:58,970 --> 00:02:02,740
但是你要把它变成数学的这种推理
38
00:02:03,930 --> 00:02:05,820
需要把它展开来算的
39
00:02:08,910 --> 00:02:12,260
这个课上我们就不要求大家做了
40
00:02:13,360 --> 00:02:14,800
有空回去大家如果愿意
41
00:02:15,710 --> 00:02:18,550
之前如果在学校里面学过了想回顾一下
42
00:02:18,560 --> 00:02:19,750
可以自己算一下
43
00:02:20,190 --> 00:02:23,650
不想回顾就算了
44
00:02:23,900 --> 00:02:25,970
如果之前在学校里没学过的
45
00:02:28,300 --> 00:02:30,270
获取知识的渠道
46
00:02:30,940 --> 00:02:33,600
一个是学校里以前是信息专业的
47
00:02:33,610 --> 00:02:35,000
包括计算机软件的
48
00:02:35,350 --> 00:02:37,650
可能学校里学过,可能现在也忘光了
49
00:02:39,190 --> 00:02:40,980
大部分忘掉了
50
00:02:41,420 --> 00:02:43,570
第2个,不是计算机专业的
51
00:02:43,580 --> 00:02:45,190
后面可能参加过软考
52
00:02:46,170 --> 00:02:47,390
这些内容
53
00:02:47,920 --> 00:02:48,990
可能也接触到
54
00:02:50,310 --> 00:02:56,780
那么也会去学,其他途径的话
55
00:02:57,620 --> 00:02:58,790
因为你一旦工作以后
56
00:02:58,800 --> 00:03:01,860
你专门去学,这种机会不是很大
57
00:03:03,090 --> 00:03:05,630
就是说,如果大家已经有了这个知识
58
00:03:05,640 --> 00:03:06,990
就不用再做这个题了
59
00:03:07,120 --> 00:03:08,390
没有的话,可以做一下
1
00:00:00,860 --> 00:00:04,680
下面我演示一道怎么解题
2
00:00:05,470 --> 00:00:06,750
其他的大家自己做
3
00:00:06,880 --> 00:00:08,750
比如说,我做最简单的
4
00:00:08,760 --> 00:00:11,920
这一道
5
00:00:12,650 --> 00:00:20,100
P蕴含P与Q,到底是真还是假
6
00:00:20,440 --> 00:00:21,440
我们可以把它展开
7
00:00:21,770 --> 00:00:25,510
这个就把蕴含变成与或非这种计算
8
00:00:25,520 --> 00:00:28,350
就变成P的否
9
00:00:29,070 --> 00:00:29,380
10
00:00:29,390 --> 00:00:34,340
或,后面一样的,P与Q
11
00:00:35,670 --> 00:00:38,090
这个就相当于什么
12
00:00:38,460 --> 00:00:42,590
你看,这是或,这是与,实际上是分配律了
13
00:00:42,870 --> 00:00:48,910
非P或P
14
00:00:52,980 --> 00:00:54,760
15
00:00:54,770 --> 00:01:03,040
非P或P,与 非P或 Q
16
00:01:03,670 --> 00:01:03,980
17
00:01:04,800 --> 00:01:07,470
非P或P肯定为真了
18
00:01:07,960 --> 00:01:09,070
互补的
19
00:01:09,080 --> 00:01:09,830
肯定为真
20
00:01:11,520 --> 00:01:13,320
但是你要使这整个为真的话
21
00:01:13,570 --> 00:01:17,840
右边这个也必须为真
22
00:01:18,790 --> 00:01:20,330
这个必须为真的话
23
00:01:21,070 --> 00:01:24,100
这两个里面有一个真就够了,因为这是或
24
00:01:26,340 --> 00:01:29,220
但是这两个一定有一个为真吗
25
00:01:29,230 --> 00:01:29,860
不一定的
26
00:01:29,870 --> 00:01:35,950
如果这两个刚好都是假的,就不行了
27
00:01:36,170 --> 00:01:38,260
这两个都是假的,有没有可能,有的
28
00:01:38,270 --> 00:01:41,910
你看,比如说,Q是假的
29
00:01:43,140 --> 00:01:46,480
非P也是假的,P是真的
30
00:01:46,490 --> 00:01:52,170
也就是说,当P为真Q为假的时候
31
00:01:54,830 --> 00:01:57,030
那么右边这个就是假的
32
00:01:58,510 --> 00:02:00,720
右边这个假就使得整个式子怎么样
33
00:02:01,660 --> 00:02:05,080
它就是假的
34
00:02:06,740 --> 00:02:11,740
所以这个是不能作为永真式的
35
00:02:11,910 --> 00:02:15,410
因为它随着你取值范围的变化
36
00:02:15,920 --> 00:02:17,980
取值的变化而变化
37
00:02:19,190 --> 00:02:19,670
对不对
38
00:02:23,300 --> 00:02:26,530
这样来,其他的大家自己空就研究一下
1
00:00:01,570 --> 00:00:06,830
下一个要回顾的基本知识就是集合论
2
00:00:10,660 --> 00:00:12,610
首先我们来看集合,Set
3
00:00:14,740 --> 00:00:15,850
什么是集合
4
00:00:16,300 --> 00:00:19,250
实际上它是一个基本的概念
5
00:00:20,060 --> 00:00:22,250
没有办法直接定义的
6
00:00:22,260 --> 00:00:25,100
你要定义就是说,它是由
7
00:00:25,110 --> 00:00:28,210
一些可以区分的
8
00:00:28,460 --> 00:00:32,160
各自不同的元素组成的
9
00:00:32,330 --> 00:00:33,520
什么叫元素呢
10
00:00:36,950 --> 00:00:39,830
所以就像我们数学里面
11
00:00:39,840 --> 00:00:41,930
什么叫点,点怎么定义
12
00:00:46,190 --> 00:00:48,270
没有办法直接定义,只能描述
13
00:00:49,110 --> 00:00:53,180
就是说,有一些东西在一起,这些东西
14
00:00:54,490 --> 00:00:57,390
它们之间是没有顺序的
15
00:00:59,560 --> 00:01:00,990
而且也不能重复
16
00:01:01,560 --> 00:01:02,780
各自不同
17
00:01:03,110 --> 00:01:05,100
没有顺序的在一起
18
00:01:07,630 --> 00:01:13,820
所以你看,{1,2}集合,跟{2,1}是一样的
19
00:01:13,830 --> 00:01:16,290
{1,2,1}也是一样的
20
00:01:16,300 --> 00:01:17,810
因为这个1是重复的
21
00:01:19,920 --> 00:01:22,640
所以这里面只有两个元素
22
00:01:23,650 --> 00:01:32,020
1和2,首先,元素跟集合的关系
23
00:01:33,210 --> 00:01:36,730
x属于S集合
24
00:01:37,410 --> 00:01:40,210
也就是说,x是集合S的元素
25
00:01:42,570 --> 00:01:44,240
相反的,就是不属于了
26
00:01:46,280 --> 00:01:53,110
打个叉,不属于,集合还有一个概念,空集
27
00:01:55,280 --> 00:01:58,580
集合里面没有元素,空集
28
00:01:59,470 --> 00:02:02,560
还有一些默认的符号来表示集合
29
00:02:02,570 --> 00:02:04,420
Z代表整数
30
00:02:04,900 --> 00:02:07,780
N代表自然数,等等
31
00:02:10,650 --> 00:02:11,920
比如说右边这个例子
32
00:02:11,930 --> 00:02:15,690
P等于这些集合
33
00:02:16,660 --> 00:02:17,940
2357
34
00:02:17,950 --> 00:02:19,820
这显然是一些自然数了
35
00:02:21,640 --> 00:02:25,380
W就是一些字符串的集合
36
00:02:29,970 --> 00:02:34,180
所以下面这些是成立的,-5不属于自然数
37
00:02:36,230 --> 00:02:36,750
负数
38
00:02:37,530 --> 00:02:38,890
-6属于整数
39
00:02:39,570 --> 00:02:39,880
这个对
40
00:02:41,190 --> 00:02:44,110
然后'4'这个字符不属于自然数
41
00:02:44,240 --> 00:02:44,830
这也对
42
00:02:47,190 --> 00:02:52,120
星期四属于W,对
43
00:02:53,540 --> 00:02:57,050
7属于P集合,对
44
00:02:59,300 --> 00:03:08,660
集合的表达方式可以分两种
45
00:03:08,870 --> 00:03:11,980
一个是直接列出来,有多少个
46
00:03:12,110 --> 00:03:15,190
13579列出来
47
00:03:15,700 --> 00:03:20,870
我们看这里,a字符,2
48
00:03:20,880 --> 00:03:25,920
然后,c字符,4,也可以放在同一个集合里面
49
00:03:27,310 --> 00:03:29,020
看起来它类型不一样
50
00:03:29,110 --> 00:03:32,870
但我们把类型放大一点
51
00:03:32,880 --> 00:03:34,110
实际上还是一样的
52
00:03:34,120 --> 00:03:36,310
你就可以认为它是对象
53
00:03:36,600 --> 00:03:37,280
都是东西
54
00:03:37,940 --> 00:03:42,970
所以如果我们的类型
55
00:03:42,980 --> 00:03:45,130
更抽象,它们是一样的
56
00:03:45,970 --> 00:03:51,130
包括集合,你看8,6,这是元素
57
00:03:51,470 --> 00:03:53,930
然后里面有一个集合,8,6组成的集合
58
00:03:53,940 --> 00:03:55,280
这也是一个元素
59
00:03:58,980 --> 00:04:00,000
看起来类型不一样
60
00:04:00,010 --> 00:04:01,560
但是如果你把它放大了
61
00:04:03,540 --> 00:04:04,810
往更抽象来看
62
00:04:04,940 --> 00:04:10,910
可以找到一个共同的类型,列出来
63
00:04:11,820 --> 00:04:14,300
显然这种列举只适合于什么
64
00:04:15,580 --> 00:04:16,980
量比较少的
65
00:04:16,990 --> 00:04:24,590
而且它的结果是定下来的
66
00:04:25,900 --> 00:04:27,010
量比较少
67
00:04:27,740 --> 00:04:32,980
如果这个里面的数量是无限的
68
00:04:33,920 --> 00:04:37,080
就像刚才整数字符串一样
69
00:04:37,770 --> 00:04:39,340
你怎么列举
70
00:04:40,490 --> 00:04:43,890
所以可以用谓词来表达
71
00:04:43,900 --> 00:04:51,080
比如说x属于S,然后这里面P(x)
72
00:04:51,460 --> 00:04:54,410
以x为变量的一个谓词
73
00:04:55,560 --> 00:05:00,930
就是S里面符合P(x)这个谓词为真的
74
00:05:01,680 --> 00:05:04,680
这些元素,这就是这个集合的意思
75
00:05:04,690 --> 00:05:10,660
这样表达,竖杠右边
76
00:05:11,760 --> 00:05:14,400
这个是一个条件,一个谓词
77
00:05:16,830 --> 00:05:18,060
变体还有很多了
78
00:05:18,800 --> 00:05:23,600
x是这个,然后条件是这个
79
00:05:25,620 --> 00:05:29,300
然后这边这样,还可以更复杂一点
80
00:05:29,310 --> 00:05:31,750
这个不是说属于什么
81
00:05:31,760 --> 00:05:37,400
属于在这里,这是条件
82
00:05:38,320 --> 00:05:44,740
然后这个是元素
83
00:05:46,310 --> 00:05:47,990
这就是符合这个条件的
84
00:05:48,120 --> 00:05:50,230
然后计算这个,就成为一个集合
85
00:05:53,820 --> 00:05:54,680
这样来表达