多分类问题

#多分类问题
##多分类问题结果一般由4中情况
1.属于类C的样本被正确分类到类C,记这一类的样本数为TP。
2.不属于类C的样本被错误的分类到类C,记这一类的样本数为FN。
3.属于类C的样本被错误的分类到其他类,记这一类的样本数为TN。
4.不属于类C的样本被正确的分类到类C的其他类,记这一类样本数为TN。
那么准确率(precison)、召回率(recall)和F测度(F-measure)计算如下:
precision=TP/(TP+FN);
recall=TP/(TP+TN);
Fmeasure=(A+1)precisionrecall/(AAprecision + recall)。
把所有的F1值取一个算术平均就得到了Macro-average。
微平均Micro-average=(TP+FP)/(TP+TN+FP+FN)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值