根据R语言提供的examples学习运行,再套用自己的数据;
适合初学者的简单R代码相关性系数和显著性P值计算及可视化绘图;
1.Hmisc包的rcorr()函数可以计算相关系数和显著性P值矩阵。
mydat<-mtcars[,1:6]#加载数据
library(Hmisc)#加载包
M<-rcorr(as.matrix(mydat))#相关性系数矩阵和相关矩阵的P矩阵计算
rcorr(x, type=c("pearson","spearman"),其中pearson相关系数可适用于连续性变量,服从正态分布的情况。
运行M, M$r, M$p ,即可以对应相关具体矩阵:
2.加载corrplot包可以对上述计算的相关系数矩阵绘图。
library(corrplot)
corrplot(M$r, method = 'number')
corrplot(M$r,method="circle")
corrplot(M$r, method = 'color', order = 'hclust')
相关系数绘图时,方法可采用下面的,采用自己喜欢的图形
"circle", "square", "ellipse", "number", "shade", "color", "pie