相关性分析(R语言rcorr)

根据R语言提供的examples学习运行,再套用自己的数据;

适合初学者的简单R代码相关性系数和显著性P值计算及可视化绘图;

1.Hmisc包的rcorr()函数可以计算相关系数和显著性P值矩阵。

mydat<-mtcars[,1:6]#加载数据
library(Hmisc)#加载包
M<-rcorr(as.matrix(mydat))#相关性系数矩阵和相关矩阵的P矩阵计算

rcorr(x, type=c("pearson","spearman"),其中pearson相关系数可适用于连续性变量,服从正态分布的情况。

运行M, M$r, M$p ,即可以对应相关具体矩阵:

2.加载corrplot包可以对上述计算的相关系数矩阵绘图。

library(corrplot)
corrplot(M$r, method = 'number')
corrplot(M$r,method="circle")
corrplot(M$r, method = 'color', order = 'hclust')

 相关系数绘图时,方法可采用下面的,采用自己喜欢的图形

"circle", "square", "ellipse", "number", "shade", "color", "pie
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值