ENVI波段合成逆运算——波段拆分

APP Store中查找工具,第8页“将多波段图像拆分成多个单波段文件 V5.3”。
在这里插入图片描述
点击 Install App安装插件。重启ENVI后,可以看到Toolbox / Extensions下有Split to Multiple Single-Band Files工具。
ENVI中打开需要进行波段拆分的文件。
点击Split to Multiple Single-Band Files工具,Select Input Data中选择需要拆分的文件,点击OK,设置输出格式和路径。
在这里插入图片描述
点击OK,即可进行波段合成的逆运算,每个波段单独生成一个文件。

### 使用 ENVI 对 Sentinel 卫星数据进行波段合成 #### 波段合成概述 波段合成为遥感图像分析提供了重要的基础工具,通过将不同波段的数据组合在一起,可以生成具有特定用途的彩色图像。对于 Sentinel-2 数据而言,其多光谱成像仪 (MSI) 提供了多个波段的信息,这些波段覆盖可见光、近红外以及短波红外区域[^4]。 #### 准备工作 在使用 ENVI 进行波段合成之前,需确保已安装 SNAP 软件并完成 Sentinel 数据格式转换至 ENVI 支持的格式[^2]。此外,确认目标文件已被导入到 ENVI 中作为单波段或多波段数据集。 #### 波段合成的具体方法 以下是基于 ENVI波段合成流程: 1. **打开数据** 启动 ENVI 并加载已经过预处理的 Sentinel-2 数据。如果数据尚未经过预处理,则需要先将其转为 ENVI 可识别的格式。 2. **选择波段** 在菜单栏中依次点击 `Basic Tools` -> `Band Select...` 打开波段选择对话框。在此界面中可以选择所需的三个波段分别对应红、绿、蓝通道以构建真彩或假彩图像。 3. **设置显示参数** 配置各波段对应的 RGB 显示顺序,并调整拉伸方式(如线性拉伸、直方图均衡化等),以便优化视觉效果。 4. **保存结果** 完成配置后执行操作并将新创建的复合图像另存为独立文件,便于后续进一步分析或者分享给其他用户。 ```python # 示例 Python 代码片段展示如何自动化部分上述过程(假设采用第三方库实现) from spectral import * import numpy as np def band_composite(input_image, bands=[4, 3, 2]): img = open_image(input_image).read_band(bands) composite_img = np.dstack((img[0], img[1], img[2])) return composite_img composite_result = band_composite('path_to_sentinel_data') save_rgb('output_composite.png', composite_result, colors='custom_palette') ``` 以上脚本仅作演示目的,在实际应用时可能还需要考虑更多细节比如地理坐标投影一致性等问题。 #### 结果解释 通过对 Sentinel-2 不同波段的选择与组合,可以获得关于地表特征的各种信息。例如利用 B4(红色), B3(绿色), 和 B2(蓝色) 创建自然色彩图片;而选取 B8(近红外), B11(SWIR1), 或者 B12(SWIR2) 则有助于突出植被覆盖率或是矿物质分布情况等等。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值