1-9 最长连续递增子序列 (20分)

1-9 最长连续递增子序列 (20分)

给定一个顺序存储的线性表,请设计一个算法查找该线性表中最长的连续递增子序列。例如,(1,9,2,5,7,3,4,6,8,0)中最长的递增子序列为(3,4,6,8)。

输入格式:

输入第1行给出正整数n(≤10​5);第2行给出n个整数,其间以空格分隔。

输出格式:

在一行中输出第一次出现的最长连续递增子序列,数字之间用空格分隔,序列结尾不能有多余空格。

输入样例:

15
1 9 2 5 7 3 4 6 8 0 11 15 17 17 10

输出样例:

3 4 6 8

思路:

除了储存输入数据的数组(num)外,另外设置一个数组(sum)用来放每一个位置上连续增大的个数:如果输入的数大于前一个,那sum数组在这个位置的值应该等于前一个位置的值+1(代表连续增加的个数多了一个);如果输入数不大于前一个,那么从这个数开始又是一个新的开始,这个位置的sum值应为1。
用max变量存最大连续个数,如果有sum[i]大于了max,那max值应更新为这个sum值,且maxid应该为当前位置的值(i)。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
	int num[10010],sum[10010];	//num数组用来存储输入的因子,sum数组用来存储当前位置连续的个数 
	int n;
	int max = 0,maxid;	//max用来存储当前最大连续个数,maxid存储最大连续因子序列的最后一个位置
	cin >> n;
	num[0] = -1;	//令输入的第一个数num[1]能够大于num[0] 
	for(int i = 1;i <= n;i++){
		cin >> num[i];
		if(num[i] > num[i-1]){
			sum[i] = sum[i-1] + 1;
			if(sum[i] > max){
				max = sum[i];
				maxid = i;
			}
		}
		else
			sum[i] = 1;
	}
	int flag = 0;
	for(int i = 1;i <= max;i++){
		if(flag++)
			cout << " ";
		cout << num[maxid - max +i]; 
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

China-Rookie-LSJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值