1-9 最长连续递增子序列 (20分)
给定一个顺序存储的线性表,请设计一个算法查找该线性表中最长的连续递增子序列。例如,(1,9,2,5,7,3,4,6,8,0)中最长的递增子序列为(3,4,6,8)。
输入格式:
输入第1行给出正整数n(≤105);第2行给出n个整数,其间以空格分隔。
输出格式:
在一行中输出第一次出现的最长连续递增子序列,数字之间用空格分隔,序列结尾不能有多余空格。
输入样例:
15
1 9 2 5 7 3 4 6 8 0 11 15 17 17 10
输出样例:
3 4 6 8
思路:
除了储存输入数据的数组(num)外,另外设置一个数组(sum)用来放每一个位置上连续增大的个数:如果输入的数大于前一个,那sum数组在这个位置的值应该等于前一个位置的值+1(代表连续增加的个数多了一个);如果输入数不大于前一个,那么从这个数开始又是一个新的开始,这个位置的sum值应为1。
用max变量存最大连续个数,如果有sum[i]大于了max,那max值应更新为这个sum值,且maxid应该为当前位置的值(i)。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int main(){
int num[10010],sum[10010]; //num数组用来存储输入的因子,sum数组用来存储当前位置连续的个数
int n;
int max = 0,maxid; //max用来存储当前最大连续个数,maxid存储最大连续因子序列的最后一个位置
cin >> n;
num[0] = -1; //令输入的第一个数num[1]能够大于num[0]
for(int i = 1;i <= n;i++){
cin >> num[i];
if(num[i] > num[i-1]){
sum[i] = sum[i-1] + 1;
if(sum[i] > max){
max = sum[i];
maxid = i;
}
}
else
sum[i] = 1;
}
int flag = 0;
for(int i = 1;i <= max;i++){
if(flag++)
cout << " ";
cout << num[maxid - max +i];
}
}