机器学习
文章平均质量分 78
学习飞行的山药
这个作者很懒,什么都没留下…
展开
-
集成学习概述
参考链接:集成学习方法bagging,boosting,stacking【入门】一文看懂集成学习(详解 bagging、boosting 以及他们的 4 点区别)【详细,建议看】集成学习(Ensemble Learning)【全面】什么是集成学习?简单来说,就是组合多种模型来改善机器学习的结果。具体来说,即结合数个“好而不同”的机器学习技术,形成一个预测模型,以此来降方差(bagging),减偏差(boosting),提升预测准确性(stacking)。集成学习是一种「训练思路」,并不.原创 2021-05-24 10:44:52 · 955 阅读 · 0 评论 -
吴恩达学习笔记——第七周
SVM基础定义分类器 监督算法代价函数基于逻辑回归的代价函数,我们逐步调节实现SVM的代价函数:修正cost(i)图中的紫色线为更正之后的cost.消去常数1/m权重常数位置改变最终得到的代价函数数学形式为:J(θ)=C∑i=1m[y(i)cost1(θTx(i))+(1−y(i))cost0(θTx(i)))]+λ/2∑j=1nθj2J(\theta)=C\sum_{i...原创 2019-05-09 18:09:48 · 225 阅读 · 0 评论 -
吴恩达学习笔记——第五周
神经网络反向传播算法BP详细推导过程原创 2019-05-09 10:26:46 · 171 阅读 · 0 评论 -
吴恩达机器学习笔记——第四周
神经网络神经网络算法的目的Logistic回归和线性回归很难或者不能处理复杂的非线性分类问题。很多分类问题需要使用数量巨大的特征,如果要使用二次项表示,会产生更多的特征项。模型表示神经元——逻辑单元如图所示,是一个人工的神经元,它负责将输入信息进行加工之后输出。其中,第一部分代表的是输入,x0=1x_0=1x0=1为偏置单元;第二部分是神经元,对于输入使用激励函数进行加工;第...原创 2019-05-09 01:40:47 · 272 阅读 · 0 评论 -
吴恩达机器学习笔记——第三周
Logistic回归目的是解决分类问题,线性回归不能很好的解决分类问题,这是因为分类问题并不能拟合成为一条直线。假设函数为了使得分类更加方便,最好输出值在0到1之间。sigmod函数正好能够满足这个特点:g(z)=11+ezg(z)=\frac{1}{1+e^z}g(z)=1+ez1因此对于假设函数进行如下变换hθ(x)=g(θTx)h_{\theta}(x)=g(\theta^...原创 2019-05-09 00:34:40 · 278 阅读 · 0 评论 -
吴恩达机器学习笔记——第二周
多变量线性回归假设hθ(x)=θ0+θ1x1+θ2x2+θ3x3+θ4x4h_\theta(x)=\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3+\theta_4x_4hθ(x)=θ0+θ1x1+θ2x2+θ3x3+θ4x4为了表示方便,我们定义一个单纯为了计算方便的特征,也就是x0=1x_0=1x0=1.此时hθ(x)=θT...原创 2019-04-28 18:17:25 · 203 阅读 · 0 评论 -
吴恩达机器学习课程笔记——第一周
机器学习是什么?定义一:机器学习是无需显式编程就能使得计算机自主学习的学科。定义二:如果计算机随着经验E的积累,在任务T上用标准P衡量的表现越来越好,那么可以说计算机正在学习。应用实例数据挖掘不能够用手写代码实现的应用,比如无人驾驶。分类主要分类:监督学习无监督学习其他:3. 强化学习4. 推荐系统监督学习意即给出一个算法,需要部分数据集已经有正确答案,换句话说...原创 2019-04-18 10:52:07 · 288 阅读 · 0 评论 -
统计相关系数——Kendall Rank(肯德尔等级)相关系数
参考内容:统计相关系数(3)——Kendall Rank(肯德尔等级)相关系数及MATLAB实现作用: Kendall相关系数是一个用来测量两个随机变量相关性的统计值。肯德尔相关系数的取值范围在-1到1之间,当τ为1时,表示两个随机变量拥有一致的等级相关性;当τ为-1时,表示两个随机变量拥有完全相反的等级相关性;当τ为0时,表示两个随机变量是相互独立的。适用范围斯皮尔曼等级相关系数对数据...转载 2019-03-15 20:34:26 · 27806 阅读 · 3 评论 -
什么是信息增益(Information Gain)?
参考链接:什么是信息增益(Information Gain)?信息熵到底是什么首先建立一棵决策树。信息增益是一个统计量,用来描述一个属性区分数据样本的能力。信息增益越大,那么决策树就会越简洁。这里信息增益的程度用信息熵的变化程度来衡量。假如我们所做的决策是是否出去玩,属性有风力、潮湿度等等。那么在有统计样本S的情况下,计算某属性信息增益的步骤如下:计算不用属性区分的情况下,决策属...转载 2019-03-15 20:06:02 · 23929 阅读 · 0 评论 -
机器学习实战笔记(一)
Section 1 分类监督学习:从输入模型中预测合适的模型,从中计算出目标变量。必须知道预测什么,即目标变量的分类信息。目标变量分为标称型和数值型两类,在第一部分分类当中研究标称型的目标变量。1. 机器学习基础1.1 何谓机器学习简单来说,机器学习就是把无序的数据来转化为有用的信息。例子:专家系统。测量所有可测属性(特征),然后从中挑选出重要部分。算法训练,学习如何分类。输入大...原创 2019-02-22 12:00:22 · 404 阅读 · 0 评论