统计相关系数——Kendall Rank(肯德尔等级)相关系数

参考内容:
统计相关系数(3)——Kendall Rank(肯德尔等级)相关系数及MATLAB实现

  1. 作用: Kendall相关系数是一个用来测量两个随机变量相关性的统计值。肯德尔相关系数的取值范围在-1到1之间,当τ为1时,表示两个随机变量拥有一致的等级相关性;当τ为-1时,表示两个随机变量拥有完全相反的等级相关性;当τ为0时,表示两个随机变量是相互独立的。
  2. 适用范围
    斯皮尔曼等级相关系数对数据条件的要求没有皮尔逊相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关系数来进行研究。
  3. 计算
    • 定义
      随机变量X、Y,它们的元素个数均为N,两个随机变量取的第i(1<=i<=N)个值分别用 X i 、 Y i X_i、Y_i XiYi表示。
      两个元素一致: ( X i &gt; X j X_i&gt;X_j Xi>Xj Y i &gt; Y j Y_i&gt;Y_j Yi>Yj) 或者 ( X i &lt; X j X_i&lt;X_j Xi<Xj Y i &lt; Y j Y_i&lt;Y_j Yi<Yj)
      两个元素不一致: ( X i &lt; X j X_i&lt;X_j Xi<Xj Y i &gt; Y j Y_i&gt;Y_j Yi>Yj) 或者 ( X i &gt; X j X_i&gt;X_j Xi>Xj Y i &lt; Y j Y_i&lt;Y_j Yi<Yj)
      两个元素既不是一致的也不是不一致的。 X i = X j X_i=X_j Xi=Xj或者 Y i = Y j Y_i=Y_j Yi=Yj
    • 这里有三个公式计算肯德尔相关系数的值
      参见参考链接,注意使用条件,以及表格的意思是这对元素集合中存在多少对,可以简单转化为集合。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值