吴恩达机器学习笔记——第三周

Logistic回归

目的是解决分类问题,线性回归不能很好的解决分类问题,这是因为分类问题并不能拟合成为一条直线。

假设函数

为了使得分类更加方便,最好输出值在0到1之间。
sigmod函数正好能够满足这个特点:
g ( z ) = 1 1 + e z g(z)=\frac{1}{1+e^z} g(z)=1+ez1
在这里插入图片描述
因此对于假设函数进行如下变换
h θ ( x ) = g ( θ T x ) h_{\theta}(x)=g(\theta^Tx) hθ(x)=g(θTx)

实际意义在于该值是参数为 θ \theta θ的情况下,输入x,得到y=1的概率。
而又由于y=0或者是1,所以一般 h θ ( x ) > 0.5 h_{\theta}(x)>0.5 hθ(x)>0.5则认为y=1.

决策边界

决策边界是划分y=0/1的直线或者曲线,如下图所示。
在这里插入图片描述
由于这条线是区分y=0/1,也就是区分 h θ ( x ) > 0.5 h_{\theta}(x)>0.5 hθ(x)>0.5是否成立,也就是区分 θ T x > 0 \theta^Tx>0 θTx>0是否成立。
所以决策边界的求解办法是令 θ T x = 0 \theta^Tx=0 θTx=0

代价函数

不能再使用与原来相同的代价函数,这是因为Logistic回归的假设函数导致随着成本函数随参数的输出是波形的,也就是不再是凸函数了,这会导致很多的局部优化。
所以,为了仍然使得代价函数为凸函数,我们对于代价函数进行改进:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
从图中可以看出,预测值越接近0(真实值),函数代价越小直到为0;预测值越接近1,函数代价越大直到趋近于正无穷。

因为y只有0和1两个值,因此整合之后的代价函数为:
J ( θ ) = − 1 m ∑ i = 1 m ( y ( i ) l o g ( h θ ( x ) ) + ( 1 − y ( i ) ) ( 1 − l o g ( h θ ( x ) ) ) J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}log(h_{\theta}(x))+(1-y^{(i)})(1-log(h_{\theta}(x))) J(θ)=m1i=1m(y(i)log(hθ(x))+(1y(i))(1log(hθ(x)))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值