22、频率分配、多着色幂与多终端割问题研究

频率分配、多着色幂与多终端割问题研究

频率分配与多着色幂

在蜂窝网络频率分配问题的研究中,可将其视为图的幂上的多着色问题。这里涉及到环形网格图 (M_{n,m}^p) ,其相关定义如下:
- (V^p = {(i, j) | 0 \leq i \leq n - 1; 0 \leq j \leq m - 1})
- (E^p = {((i, j), (i \pm l \bmod n, j \pm r \bmod m)) | 1 \leq l + r \leq p})

设 (W) 为 (M_{n,m}^p) 的加权团数,有如下定理:
定理 6 :若 (p < \min(\lceil\frac{n}{2}\rceil, \lceil\frac{m}{2}\rceil)),则存在一个多项式时间算法,使用至多 (4W) 种颜色对阶为 (n*m) 的加权 (p) 次幂环形网格的任意顶点进行多着色。

证明思路 :要证明 (M^p = (V^p, E^p)) 满足性质 (P4)。设 (s = (i, j)) 是 (V^p) 的一个顶点,(V_s^p = N(s) \cup {s}) 是 (V^p) 中所有与 (s) 的距离小于等于 (p) 的顶点的子集。接着构造 (V_s^p) 的四个子集:
- (K_{ij}^1 = {(i \pm r, j - l) \in V_s^p | 0 \leq r + l \leq p; 0 \leq r \leq l})
- (K_{ij}^2 = {(i + r, j \pm l) \in V_s^p | 0 \leq r + l

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值