7、自适应共振理论:原理、应用与未来范式

自适应共振理论及智能系统应用

自适应共振理论:原理、应用与未来范式

1. 自适应共振理论基础

在学习过程中,早期对代表特定类别的关键特征的关注,可能会在后续学习中扭曲记忆表征。若训练输入能重复呈现,自适应共振理论(ART)系统可纠正这些初始错误,但实时学习往往难以提供重复机会。

为解决这一问题,有偏自适应共振理论(bART)应运而生。当系统出现预测错误后,它会引导注意力从最初关注的特征上转移开,避免过度强调早期关键特征。

在ART场F1中,活动x计算该场自下而上和自上而下输入模式之间的匹配度。当x未达到由警觉性确定的匹配标准时,重置信号会关闭活跃的F2代码。不过,仅重置并不一定会产生不同的代码,除非先前的代码在F0 - F2子系统中留下了持久痕迹,否则网络可能会在F2处重新激活相同的模式。

重置后,所有ART系统都会将注意力从F2场中先前活跃的编码节点上转移。如ART 3模型所示,通过偏向编码场的自下而上输入,使先前不活跃的F2节点更受青睐,从而实现搜索功能,让网络能响应重置信号激活新代码。ART 3的搜索机制在F0到F2的自适应滤波器中定义了中期记忆,防止系统无限期地执着于刚产生重置的输出类别。这种偏置机制的突触前解释是递质耗竭或习惯化。

bART网络引入了第二种自上而下的中期记忆,重置后会将注意力从匹配场F1中先前活跃的特征节点上转移。以图1为例,在重置前后,输入A和F1处的匹配模式x中第一个特征都有强烈表现,但bART会按特定顺序减小匹配模式中第一个特征的大小,这有助于系统更多关注先前忽略的输入特征。

偏置机制是一个小的模块化元素,可添加到任何ART网络中。计算示例和波士顿测试台模拟表明,针对预测错误的特征偏置能提高监督学习任务的性能,且触发偏

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值