Given two non-negative integers num1
and num2
represented as strings, return the product of num1
and num2
.
Note:
- The length of both
num1
andnum2
is < 110. - Both
num1
andnum2
contains only digits0-9
. - Both
num1
andnum2
does not contain any leading zero. - You must not use any built-in BigInteger library or convert the inputs to integer directly.
看到这个题目的第一反应就是大整数的计算器。。。 冒出两个思路:1.将字符串转换为整数,进行相乘,然后将结果转换为字符串。当然这钟方法是无法处理好溢出问题的 2.大整数乘法的过程可知,可以通过个位数与大整数的乘法以及大整数加法来完成
思路一:不实现大整数加法来完成大整数乘法,通过将大整数乘法的过程再进行细分。num1的i位和num2的j位相乘,得到数为mul,因为存在进行位的关系,需要将mul和正在生成的结果的i+j+1相加得到sum,sum的个位数将分配在i+j+1位上,sum的十位数将分配在i+j位上
代码如下:
class Solution {
public:
string multiply(string num1, string num2) {
int m=num1.length(),n=num2.length();
int *p = new int[m+n];
memset(p,0,sizeof(int)*(m+n));
for(int i=m-1;i>=0;i--)
{
for(int j=n-1;j>=0;j--)
{
int mul = (num1[i]-'0')*(num2[j]-'0');
int sum = p[i+j+1] +mul ;
p[i+j] += sum/10;
p[i+j+1] = sum%10;
}
}
string res;
string temp;
for(int i=0;i<m+n;i++)
{
if(!(res.length() == 0 && p[i] == 0))
{
temp = p[i]+'0';
res.append(temp);
}
}
return res.length() == 0?"0":res;
}
};
发现有个思路差不多的,但是编写出来的效率更高,贴出来研究下:
class Solution {
public:
string multiply(string num1, string num2) {
string sum(num1.size() + num2.size(), '0');
for (int i = num1.size() - 1; 0 <= i; --i) {
int carry = 0;
for (int j = num2.size() - 1; 0 <= j; --j) {
int tmp = (sum[i + j + 1] - '0') + (num1[i] - '0') * (num2[j] - '0') + carry;
sum[i + j + 1] = tmp % 10 + '0';
carry = tmp / 10;
}
sum[i] += carry;
}
size_t startpos = sum.find_first_not_of("0");
if (string::npos != startpos) {
return sum.substr(startpos);
}
return "0";
}
};
通过对比可以发现,第一份代码多出了将int数组转换为string的开销